World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Traditional wood frame construction (yurta)

Report #	35
Report Date	05-06-2002
Country	KYRGYZSTAN
Housing Type	Timber Building
Housing Sub-Type	Timber Building : Post and beam frame (no special connections)
Author(s)	Ulugbek T. Begaliev, Svetlana Uranova
Reviewer(s)	Marjorie Greene

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This type of building is the national traditional dwelling of the Kyrgyz people. It is a light portable construction. The bearing structure of a yurta is a special wood frame, consisting of wood poles. The wood frame is covered by felt tension cloth. The floors are traditionally covered with felt rugs (koshma). Yurtas can be easily disassembled and moved to new places. They are warm in winter and cool in the summer. The buildings have only one door and one

opening in the roof. Yurtas are circular in plan. The diameter is usually 4 m#6 m. This type of building is used at the present time by shepherds, particularly during the summer, for celebrations and funerals, and as temporary buildings during extreme situations in Kyrgyzstan. The yurta is a very light structure, has a symmetrical plan, and has good seismic resistance.

1. General Information

Buildings of this construction type can be found in Kyrgyzstan, typically in the mountains. This type of housing construction is commonly found in rural areas. This construction type has been in practice for more than 200 years.

Currently, this type of construction is being built. .



Figure 1A: Typical Building

Figure 1B: Another view of a typical building

Figure 1C: Interior view of yurta

Figure 2A: Key Load-Bearing Elements

Figure 2B: Key Load-Bearing Elements

Figure 2C: Key Load-Bearing Elements

Figure 2D: Key Load-Bearing Elements

2. Architectural Aspects

2.1 Siting

These buildings are typically found in sloped and hilly terrain. They do not share common walls with adjacent buildings. This is the minimum distance as a rule When separated from adjacent buildings, the typical distance from a neighboring building is 10 meters.

2.2 Building Configuration

The typical building shape for a yurta is a circle. House has no windows and has one door 1.9(h) m X 0.9 m. There is also a circular opening in the roof.

2.3 Functional Planning

The main function of this building typology is single-family house. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. Yurta has one door. The bearing structure is very light; if the yurta collapses it is not typically dangerous for its inhabitants.

2.4 Modification to Building

Typically there are no modifications made to a yurta.

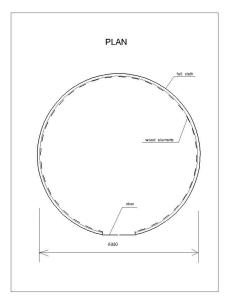


Figure 3: Plan of a Typical Building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Struct	ture #	Subtypes	Most appropriate type
	Stone Masonry Walls	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	Walls		Dressed stone masonry (in lime/cement mortar)	
			1	1

		3	Mud walls	
Į	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
			Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	walls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
Structural concrete	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
	Structural wall	22	Moment frame with in-situ shear walls	
		23	Moment frame with precast shear walls	
		24	Moment frame	
	Precast concrete	25	Prestressed moment frame with shear walls	
		26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
		29	With brick masonry partitions	
	Moment-resisting frame	30	With cast in-situ concrete w alls	
		31	With lightweight partitions	
Steel	Braced frame	32	Concentric connections in all panels	
		33	Eccentric connections in a few panels	
	Structural wall		Bolted plate	
		35	Welded plate	
		36	Thatch	
		37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
		38	Masonry with horizontal beams/planks at intermediate levels	

Timber	Load-bearing timber frame		Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
		41	Stud-wall frame with plywood/gypsum board sheathing	
		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
Other	Seismic protection systems	44	Building protected with seismic dampers	
	Hybrid systems	45	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is others (described below). Gravity Load-Bearing Structure consists of the frame formed by the wooden poles.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is timber frame. Lateral load-resisting system consists of the very stable, evenly spaced wooden poles that form the frame.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 0 and 0 meters, and widths between 0 and 0 meters. The building is 1 storey high. The typical span of the roofing/flooring system is 5-6 meters. Typical Plan Dimensions: Plan shape is circle. Diameter varies from 5 to 6 meters. The typical storey height in such buildings is 4 meters. The typical structural wall density is none. Summary thickness of wall with wood pole is about 10 cm. Wall density is on the order of 5%.

3.5 Floor and Roof System

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		

	Thatched roof supported on wood purlins	
	Wood shingle roof	
Timber	Wood planks or beams that support clay tiles	
	Wood planks or beams supporting natural stones slates	
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles	
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls	
Other	Described below	

Wooden pole.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep toundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

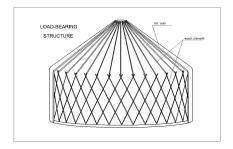


Figure 4: An Illustration of Key Seismic Features and/or Deficiencies

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 1 housing unit(s). 1 units in each building. The number of inhabitants in a building during the day or business hours is less than 5. also 5-10. The number of inhabitants during the evening and night is less than 5. also 5-10.

4.2 Patterns of Occupancy

Yurta is a dwelling unit for one family.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

80% poor and 20% middle dass inhabitants occupy building of this type.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are no bathroom(s) without toilet(s), no toilet(s) only and no bathroom(s) induding toilet(s).

4.4 Ownership

The type of ownership or occupancy is outright ownership.

Type of ownership or occupancy?	Most appropriate type

Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/	Statement		Most appropriate type		
Architectural Feature			No	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.				
Building Configuration	The building is regular with regards to both the plan and the elevation.				
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.				
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.				
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.				
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);				
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are dow eled into the foundation.				
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps				
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance betw een the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance betw een the adjacent cross walls;				

	For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.		
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).		
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).		
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)		
Additional Comments			

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall		Light weight bearing structures.	
Frame (columns, beams)			
Roof and floors			
Other			

Yurtas have not been seriously damaged in earthquakes.

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is F: VERY LOW VULNERABILITY (i.e., excellent seismic performance), the lower bound (i.e., the worst possible) is E: LOW VULNERABILITY (i.e., very good seismic performance), and the upper bound (i.e., the best possible) is F: VERY LOW VULNERABILITY (i.e., excellent seismic performance).

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	C	D	E	F
Class						

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1986	Kairakum	6.8	VII
1992	Suusamir	7.4	IX

During the indicated earthquakes and many others, yurtas had no damages.

6. Construction

6.1 Building Materials

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls	felt cloth.			
Foundation				
Frames (beams & columns)	wood pole.			
Roof and floor(s)				

6.2 Builder

Usually shepherds live in yurtas. They assemble the yurtas themselves. It can also be used as a temporary building by any person.

6.3 Construction Process, Problems and Phasing

The yurta is erected by its inhabitants/owners without any special building expertise or knowledge of building techniques. The construction of this type of housing takes place incrementally over time. Typically, the building is originally not designed for its final constructed size.

6.4 Design and Construction Expertise

There is no special expertise associated with this building type. This building type is erected without engineers and architects.

6.5 Building Codes and Standards

This construction type is not addressed by the codes/standards of the country. The year the first code/standard addressing this type of construction issued was Yurtas were used before introduction of building codes. SNiP II-7-81. Building in Seismic Regions. Design code. The most recent code/standard addressing this construction type issued was 1981. Year the first code/standard addressing this type of construction issued: Yurtas were used before introduction of building codes. National building code, material codes and seismic codes/standards: SNiP II-7-81. Building in Seismic Regions. Design code When was the most recent code/standard addressing this construction type issued? 1981.

6.6 Building Permits and Development Control Rules

This type of construction is a non-engineered, and not authorized as per development control rules. Building permits are not required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s).

6.8 Construction Economics

About 50-70 US $/m^2$. One day for 4 persons.

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing

buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

N/A.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? N/A.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? N/A.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

N/A.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? N/A.

Reference(s)

- 1. Seismic Hazard and Buildings Vulnerability in Post-Soviet Central Asia Republics NATO Series, Netherlands
- 2. Buildings and Constructions Design in Seismic Regions Handbook, Bishkek 1996

Author(s)

 Ulugbek T. Begaliev Head of Department, KNIIPC Vost Prom Zone Cholponatisky 2, Bishkek 720571, KYRGYZSTAN Email:utbegaliev@yahoo.com

 Svetlana Uranova Head of the Laboratory, KRSU Kievskai 44, Bishkek 720000, KYRGYZSTAN Email:uransv@yahoo.com FAX: 996-3312-282859

Reviewer(s)

 Marjorie Greene Special Projects Manager

 Earthquake Engineering Research Institute Oakland California 94612-1934, USA Email:mgreene@eeri.org FAX: (510)451-5411

Save page as

