World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Confined masonry houses

Report #	51
Report Date	05-06-2002
Country	PERU
Housing Type	Confined Masonry Building
Housing Sub- Type	Confined Masonry Building : Clay brick masonry, with concrete tie-columns and beams
Author(s)	Cesar Loaiza F., Marcial Blondet
Reviewer(s)	Sergio Alcocer

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This is the most common single-family housing construction practice followed both in urban and rural areas of Peru in the last 45 years. Confined masonry buildings consist of load-bearing unreinforced masonry walls made of clay brick units, confined by cast-in-place reinforced concrete tie columns and beams. These buildings do not have a complete load path in both horizontal directions required for adequate lateral load resistance. However, in spite of that, typical houses may show a good seismic performance.

1. General Information

Buildings of this construction type can be found in all parts of Peru, particularly in the coastal region. This type of housing construction is commonly found in both rural and urban areas. This construction type has been in practice for less than 50 years.

Currently, this type of construction is being built. This construction type is followed in the last 45 years.

Figure 1: Typical Building

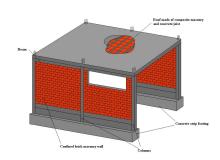


Figure 2: Key Load-Bearing Elements

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. When separated from adjacent buildings, the typical distance from a neighboring building is 0.01 meters.

2.2 Building Configuration

Rectangular shape or L-shape. A typical house has 6 to 10 windows per floor, with a total average size of 3.0 m^2 . The position of these openings is variable, but usually is approximately 0.8 to 1.0 m from the floor level in rooms and from 1.8 to 2.0 m in bathrooms.

2.3 Functional Planning

The main function of this building typology is single-family house. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. A typical house has only one main stair used in case of an emergency.

2.4 Modification to Building

Commonly, owners build interior walls or additional floors for new rooms.

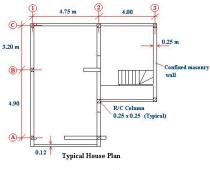


Figure 3: Plan of a Typical Building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Struct	ure #		Most appropriate type
	Stone Masonry Walls	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	w ans	2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
		5	Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	w alls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		10	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural cond	crete	22	Moment frame with in-situ shear walls	

	Structural wall	23 Moment frame with precast shear walls	
		24 Moment frame	
		25 Prestressed moment frame with shear walls	
	Precast concrete	26 Large panel precast walls	
		27 Shear wall structure with walls cast-in-situ	
		28 Shear wall structure with precast wall panel structure	
		29 With brick masonry partitions	
	Moment-resisting frame	30 With cast in-situ concrete w alls	
		31 With lightweight partitions	
	Braced frame	32 Concentric connections in all panels	
		33 Eccentric connections in a few panels	
	Structural wall	34 Bolted plate	
		35 Welded plate	
		36 Thatch	
ll imber II		37 Walls with bamboo/reed mesh and post (Wattle and Daub)	
		Masonry with horizontal beams/planks at intermediate levels	
	Load-bearing timber frame	39 Post and beam frame (no special connections)	
		40 Wood frame (with special connections)	
		Stud-wall frame with 41 plywood/gypsum board sheathing	
		42 Wooden panel walls	
		43 Building protected with base-isolation systems	
Other	Seismic protection systems	44 Building protected with seismic dampers	
	Hybrid systems	45 other (described below)	

In some cases, rubble stone and massive stone walls have been used.

3.2 Gravity Load-Resisting System

The vertical load-resisting system is confined masonry wall system. In general, the same system as describe above. Floors/roofs transmits gravity loads to the structural walls.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is confined masonry wall system. Masonry shear walls give stiffness to the structure and control lateral drifts. Tie columns and bond beams provide adequate confinement and ductility to the masonry walls. Typical houses have a good wall density in one horizontal direction, but a lower wall density in the other. This makes the house particularly vulnerable in the horizontal direction where the density is lowest. Tie columns have enough longitudinal reinforcement to resist overturning moments. Closely spaced transverse reinforcement at beam-column joints provides adequate ductility to resist seismic forces. Floors/roofs can consider to be rigid diaphragms in

the analysis. Typical wall thickness is 150 mm or 250 mm.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 10 and 15 meters, and widths between 5 and 10

meters. The building has 2 to 3 storey(s). The typical span of the roofing/flooring system is 3-4 meters. The typical storey height in such buildings is 2.60 - 2.80 meters. The typical structural wall density is up to 10 %. Typical wall densities for each horizontal direction are 2% and 7%, respectively.

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
Vaulted			
Masonry Composite system of concrete joists and masonry panels			
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
Timber	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
	Wood planks or beams that support clay tiles		
	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below		

3.5 Floor and Roof System

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	

	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep foundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

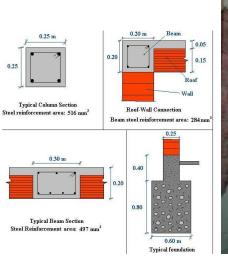


Figure 4: Critical Structural Details

Figure 5A: Key Seismic Features-Slender Walls

Figure 5B: Seismic Deficiencies - Short Column

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 1 housing unit(s). 1 units in each building. In some cases, two families may occupy one house. The number of inhabitants in a building during the day or business hours is less than 5. The number of inhabitants during the evening and night is 5-10.

4.2 Patterns of Occupancy

Typically, one family occupies one house.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

Economic Level: For Middle Class the Housing Unit Price is 80,000 and the Annual Income is 12,000. For Rich Class the Housing Unit Price is 120,000 and the Annual Income is 60,000.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 3 bathroom(s) without toilet(s), 1 toilet(s) only and 3 bathroom(s) induding toilet(s).

Typically 3 or 4 bathrooms per house. .

4.4 Ownership

The type of ownership or occupancy is renting, outright ownership and ownership with debt (mortgage or other).

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-te r m lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Feature		Yes	No	N/A
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.			
Building Configuration	The building is regular with regards to both the plan and the elevation.			
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.			
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.			
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.			
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.			
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);			
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are dow eled into the foundation.			
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps			
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.			
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).			
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).			
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)			
Additional Comments				

5.2 Seismic Features

Resident realities	Structural Element	Seismic Deficiency	Earthquake Resilient Features
--------------------	-----------------------	--------------------	----------------------------------

Wall	-Inadequate thickness to resist gravity and seismic loads (slender w alls)Inadequate w all density in one direction.	transform	Shear cracking in the walls (cracks propagate through tie columns).
Frame (columns, beams)			
Roof and floors			

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance)*, the lower bound (i.e., the worst possible) is *C: MEDIUM VULNERABILITY (i.e., moderate seismic performance)*, and the upper bound (i.e., the best possible) is *E: LOW VULNERABILITY (i.e., very good seismic performance)*.

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	С	D	Е	F
Class						

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1970	Chimbote	7.8	VI (MM)
1974	Lima	7.7	VIII (MM)
1996	Nazca	7.3	VII (MM)

Figure 6: A Photograph Illustrating Typical Earthquake Damage (1996 Nazca earthfquake)

6. Construction

6.1 Building Materials

Building

element	material		proportions/dimensions	Comments
Walls	Brick masonry	Compressive strength (masonry prisms): 13 - 16 MN/m² Shear strength: 0.6 - 0.8 MN/m²		Compressive strengths depend on the quality of brick units.
Foundation	Concrete	Compression strength: 10-14 MN/m ²		
Frames (beams & columns)	Concrete	Compression strength: 18 - 21 MN/m ² Steel yield strength: 410 MN/m ²	1:2:3	
Roof and floor(s)	Concrete	Compression strength: 21- 35 MN/m² Steel yield strength: 10 MN/m²	1:2:3	

6.2 Builder

It is typically built by developers.

6.3 Construction Process, Problems and Phasing

Masonry walls are built with serrated edges, and then the tie-columns are cast against them. After that, bond beams, lintels and floors are built simultaneously. Concrete is mixed in machine mixers and taken with wheelbarrows to fill the wood formwork. Tools and equipment used are: hammers, spatulas, wheelbarrows, concrete vibrator and concrete mixers. The construction of this type of housing takes place in a single phase. Typically, the building is originally not designed for its final constructed size. Buildings are originally designed for a specific number of stories. However, it is common that owners decide to build additional floors some years later.

6.4 Design and Construction Expertise

Both, the structural and the construction engineer will have five years of study and minimum work experience of two years. Engineers are in charge of the structural design and construction process. Architects are in charge of the architectural design and construction process.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. Seismic Design Standards E-030. The

year the first code/standard addressing this type of construction issued was 1977. National Construction Standards,

Masonry Standards E-070. The most recent ∞ de/standard addressing this ∞ nstruction type issued was 1998. Title of the ∞ de or standard: Seismic Design Standards E-030. Year the first ∞ de/standard addressing this type of ∞ nstruction issued: 1977 National building ∞ de, material ∞ des and seismic ∞ des/standards: National Construction Standards, Masonry Standards E-070 When was the most recent ∞ de/standard addressing this ∞ nstruction type issued? 1998.

Municipal authorities approve the structural and architectural design for the building. It is a common practice that owners retain a building supervisor to oversee the construction process.

6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Builder, Owner(s), Tenant(s) and No one.

6.8 Construction Economics

Unit construction cost may vary from 200 to 250 \$US/m². This price indudes the entire construction cost and could dange depending on the quality of finishing materials. In order to start the construction, it is necessary to get a

building permit. Municipal authorities are in charge of giving this permit to builder companies. Each project must have four types of technical drawings: structural drawings, architectural drawings, hydraulic installation drawings, and power installation drawings. Municipal authorities need to approve this technical information to issue a building permit. A typical 2-story house will need approximately 90 days (3 months) to complete the construction.

7. Insurance

Earthquake insurance for this construction type is typically available. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is available. It is not common that owners purchase earthquake insurance. It is a total coverage, which indudes the price of a new house.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Strengthening of New Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Parapets and	Parapets and nonstructural walls are confined with tie columns and bond beams. When parapets are located between tie		
nonstructural walls	columns, they are isolated with a construction joint.		

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

Yes, parapets are confined and nonstructural walls are isolated from the structure.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? The seismic strengthening was done in a new construction.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? N/A.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

Usually engineers are involved in the strengthening efforts.

What was the performance of retrofitted buildings of this type in subsequent earthquakes?

Good seismic performance: parapets resist overturning forces and cracking effects were reduced in non structural walls.

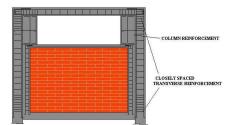


Figure 7: Illustration of Seismic Strengthening Techniques

Reference(s)

- Diseno de Estructuras de Concreto Armado Harmsen T. y mayorca Pontificia Universidad 1997
- Norma Peruana de Albanileria E-070 Norma Peruana de Albanileria E-070 Capitulo Peruana del ACL. 1998
- Norma Peruana de Diseno Sismorresistente E-070 Capitulo Peruano del Peru. 1998
- El Terremoto de Nasca del 12 de Noviembre de 1996 Quiun,San Bartolome,Torrealva, Zegarra Pontificia Universidad Catolica del Peru 1997
- Construcciones en Albanileria San Bartolome Pontificia Universidad Catolica del Peru 1994
- Fuerzas Sismicas de Diseno para Edificaciones de.. San Bartolome, Munoz, Rodriguez Pontificia Universidad Catolica del Peru 2001

Author(s)

- Cesar Loaiza F. Professor, Civil Engineering Dept., Catholic University of Peru Av. Universitaria cuadra 18 San Miguel 32, Lima 100, PERU Email:cloaiza@pucp.edu.pe FAX: 51-1-463-6181
- Marcial Blondet
 Professor, Civil Engineering Dept., Catholic University of Peru POB 1761, Lima 32, PERU Email:mblondet@pucp.edu.pe FAX: 51-1-463-6181

Reviewer(s)

 Sergio Alcoer Director of Research Circuito Escolar Cuidad Universitaria, Institute of Engineering, UNAM Mexico DF 4510, MEXICO Email:salcoerm@iingen.unam.mx FAX: +52 (55) 56162894 Save page as

