EERI World Housing Encyclopedia International Workshop on Vulnerability Parameters for Common Building Types Skype teleconference, September 23, 2009

Seismic vulnerability assessment of R/C buildings with brick masonry infills

A.J. Kappos, Professor G. Panagopoulos, PhD Candidate

Department of Civil Engineering, Aristotle University of Thessaloniki

Previous contributions of the AUTh Team to PAGER

The AUTh team contributed to Phase I of the WHE-PAGER project jointly with the RMS-Greece Team (A. Pomonis)

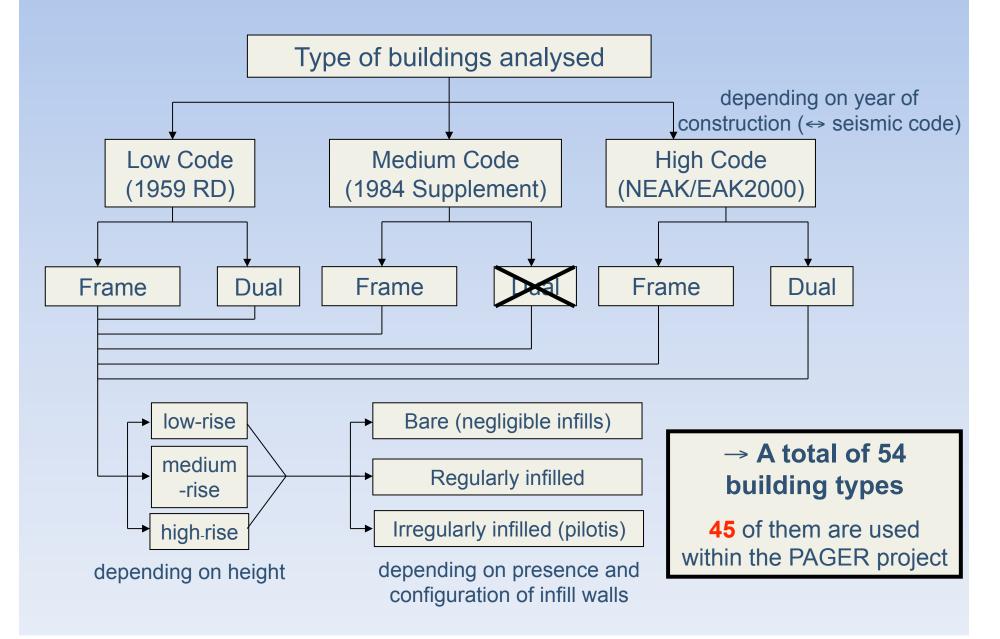
Collapse probability values for several intensity levels, as well as population distribution data, were provided for all common R/C and URM building types (see also *Pomonis, Kappos et al., 2008, 2009*)

A hybrid methodology was utilized (see SF meeting), combining analytical results and statistical data from past earthquakes. Two different approaches were adopted re. the definition of *collapse*.

WHE	Description of construction	Estimate of probability of collapse (%) of the building type when				Fraction of		
Construction	dhe (dhe or load-	subjected to the specified shaking intensity (expressed as a range)					population who LIVES in this	
Туре	bearing structure)		la Carta ta			building type		
or Material		(refer to instructions page 5)					(refer to	
refer to Table 2	(refer to Tables 2 and 3 for suggested	(3)					instructions for	
for suggested	categories and sources of data to belp	MMI / EMS / MSK					belp in estimating	
category(ies)	answer this question)							
	(2)	IX	VIII	VII	VI	urban	rural	
(1)		(~0.65-1.24g)	(~0.34-0.65g)	(~0.18-0.34g)	(~0.09218g)	areas	areas	
<u> </u>				ļ	l	(4)	(5)	
16	R/C Moment Resisting Frames	15	5	2	0.5	50	25	
	Old Codes - Pre 1985	113	1	2	10.5	150	25	
16	R/C Moment Resisting Frames							
1.0	Modern Codes - Post 1985	4	0.5	.02	0	7.5	9	
19	R/C Dual Structures (Frames + Shear Walls), Old Codes - Pre 1985	11.5	3	.15	0	12.5	3	
			,				,	
19	R/C Dual Structures (Frames + Shear Walls), Modern Codes - Post 1985	3	.3	.01	0	22	9	
1	Walls), Modern Codes - Post 1985	-	1	1	<u> </u> -		1	
1		80	14	8	5	1.5	23	
<u>U'</u>	Stone masonry	000	14	P	1	1.2	23	
9	Unreinforced brick masonry	37	4	.6	.2	5.5	30	

WHE-PAGER Phase III

 Objective of phase III of the WHE-PAGER project: to propose "HAZUS-type" vulnerability parameters for R/C buildings, presented in tailor-made and homogenized MS Excel forms.

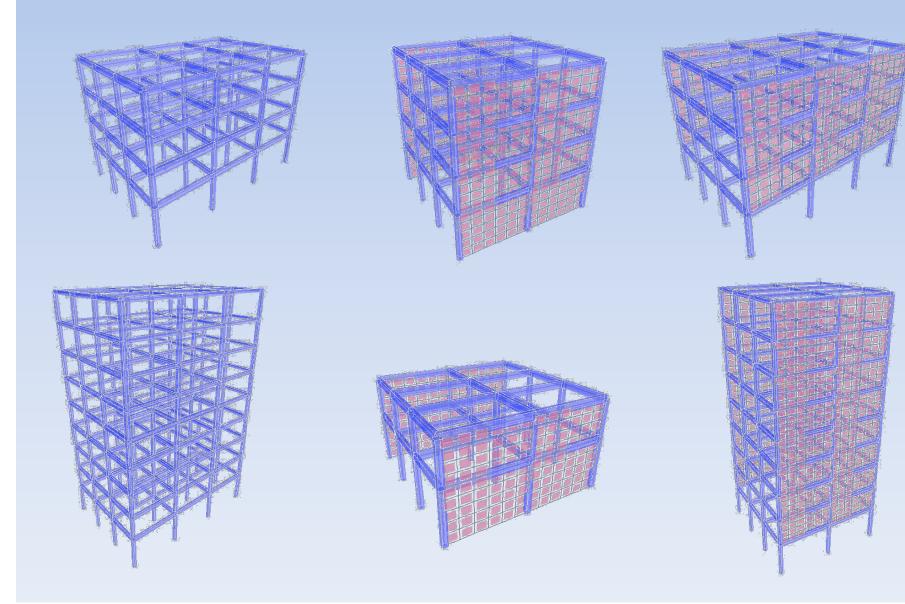

The AUTh team was asked to fill in the forms for ductile and nonductile reinforced concrete frame buildings with/without masonry infill walls as well as R/C moment resisting frame with shear wall - dual systems (classes C1, C3, C4 and C6 using the PAGER nomenclature).

These building classes practically cover all common R/C building types in Greece and several other S. European countries.

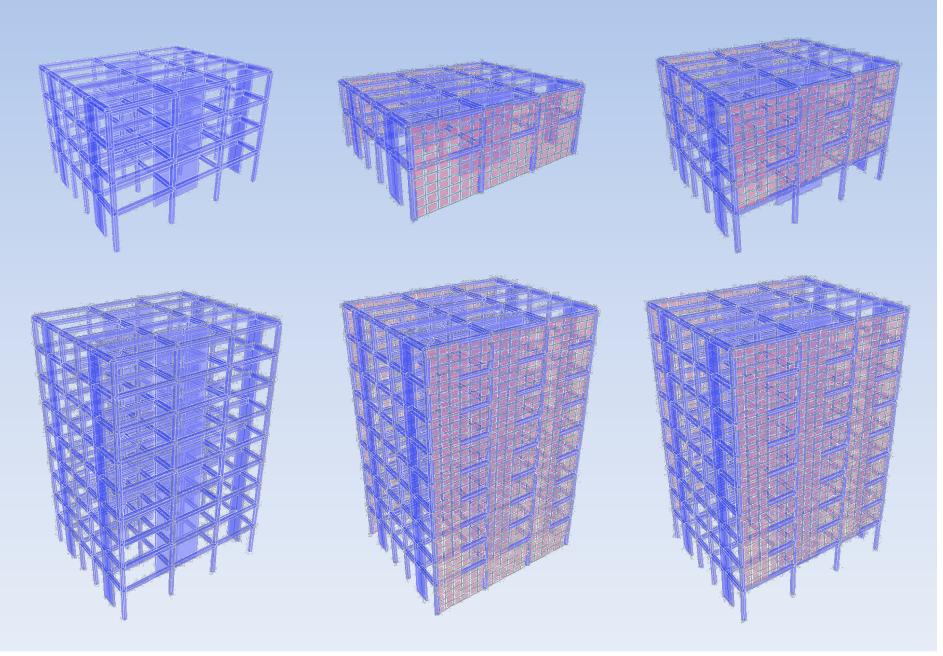
Data for R/C frame buildings were provided almost a year ago.

This presentation focuses mainly on R/C dual structures (same methodology adopted as for infilled frames)

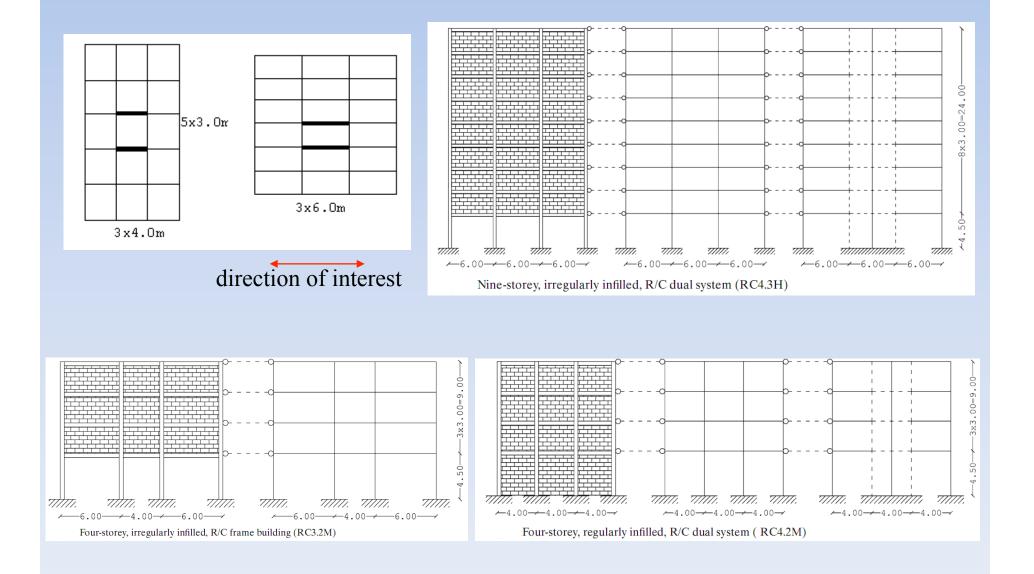
Inelastic analysis phase – Building typologies



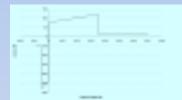
AUTh (Risk-UE) vs. PAGER building typologies


Туре	Structural system	Height (number of storeys)	Seismic design level
RC1	Concrete moment frames		
RC3	Concrete moment frames with		
	unreinforced masonry infill walls		
3.1	Regularly infilled frames	(L)ow-rise $(1-3)$	(L)ow code
3.2	Irregularly infilled frames (pilotis)	(M)id-rise $(4-7)$	(M)edium code
RC4	RC dual systems (RC frames and walls)	(H)igh-rise (8+)	(H)igh code
4.1	Bare frames (no infill walls)		
4.2	Regularly infilled dual systems		***
4.3	Irregularly infilled dual systems (pilotis)		ČRIŠK-U E

Sr. No.	PAGER- STR	Descripti orof Structure
18	C1	Ductile reinforced concrete moment frame with or without infill
19	C3	Nonductile reinforced concrete frame with masonry infill walls
20	C4	Nonductile reinforced concrete frame without masonry infill walls
21	C6	Concrete moment resisting frame with shear wall - dual system

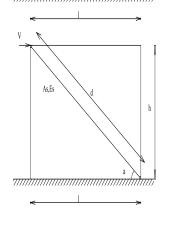

Examples of R/C frame structures

Examples of R/C dual structures



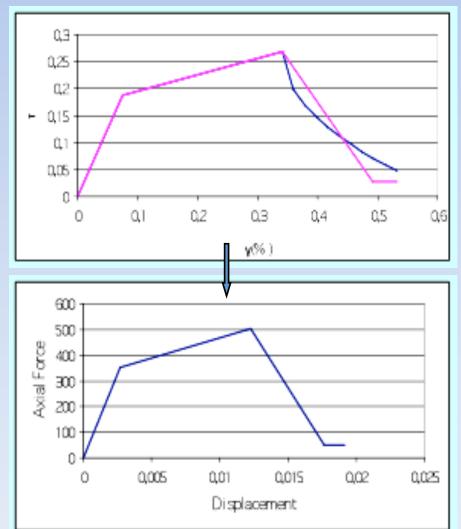
2D building models for pushover analysis

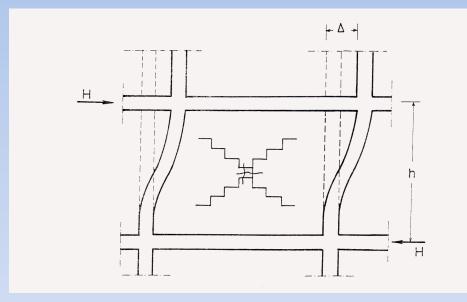
Modelling of R/C members:


Point hinge approach

moment – rotation (θ_p) curve for a beam (SAP 2000)

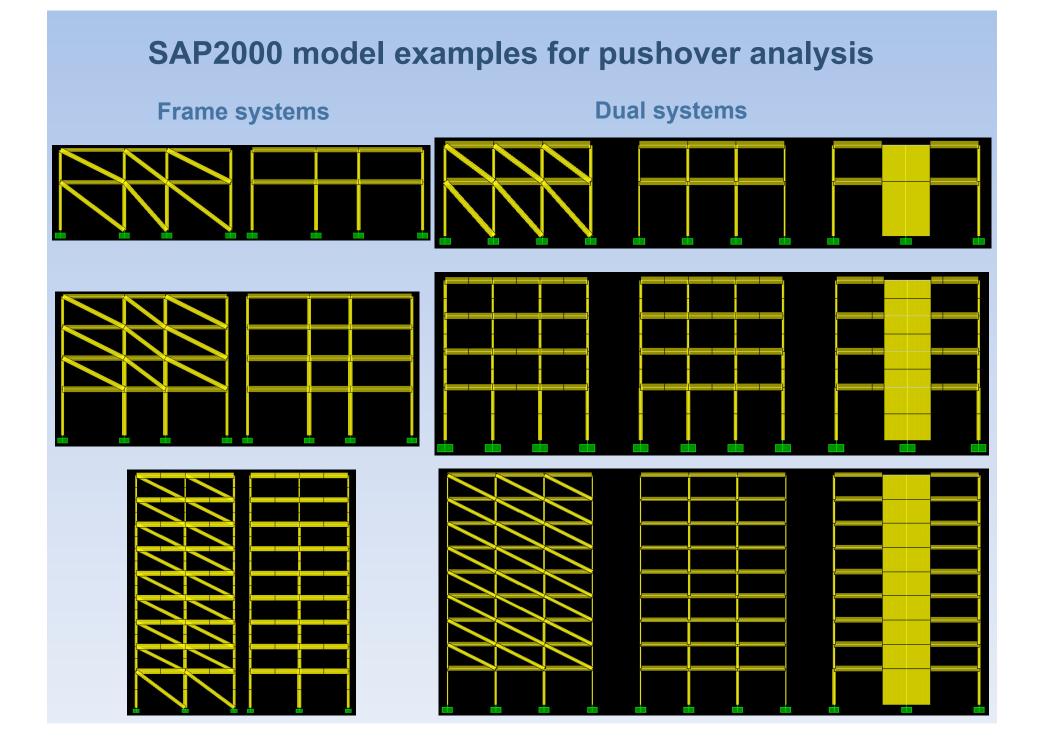
Modelling of infills [Kappos et al. 1997]


Strut model

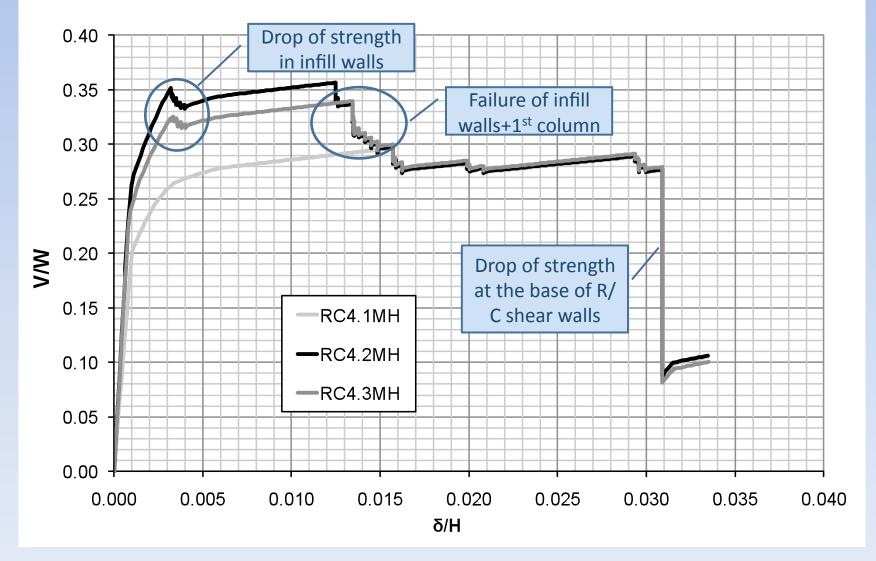

Aw,Gw

77777

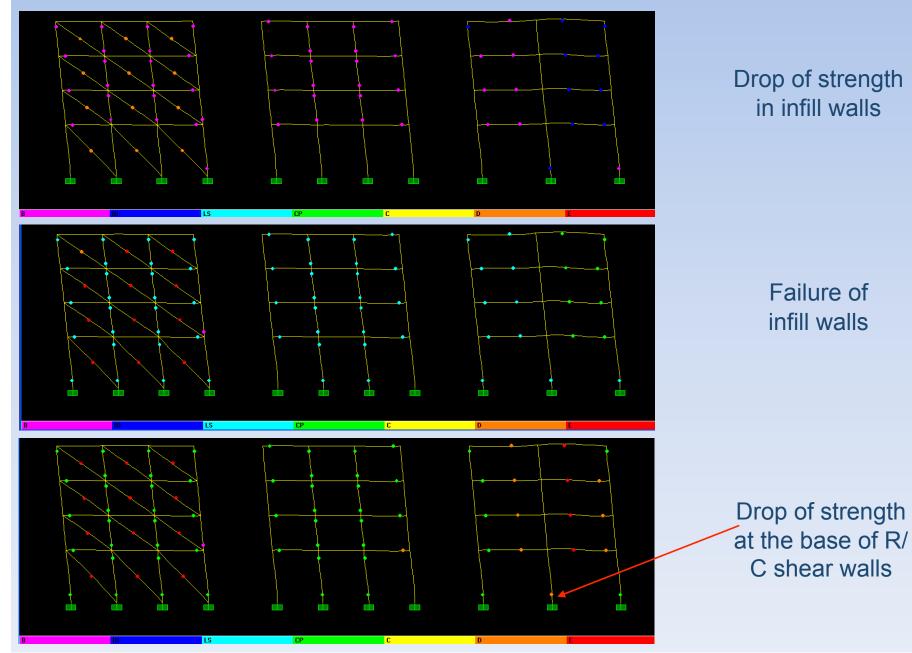
- multilinear version of hysteresis law based on test results (brick masonry)
- no significant axial load
- masonry f_w=1.5 MPa



Typical damage of a brick-masonry infill wall



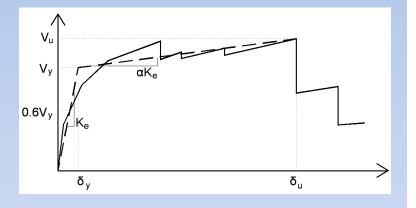
Diagonal cracking of the brick-masonry infill in an R/C infilled frame



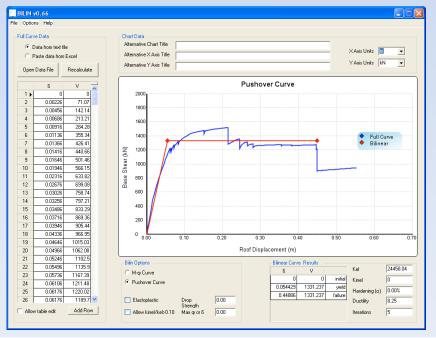
Typical pushover curves for dual systems

Medium-rise (4 storey) R/C dual systems designed to modern seismic codes

Typical pushover curves for dual systems

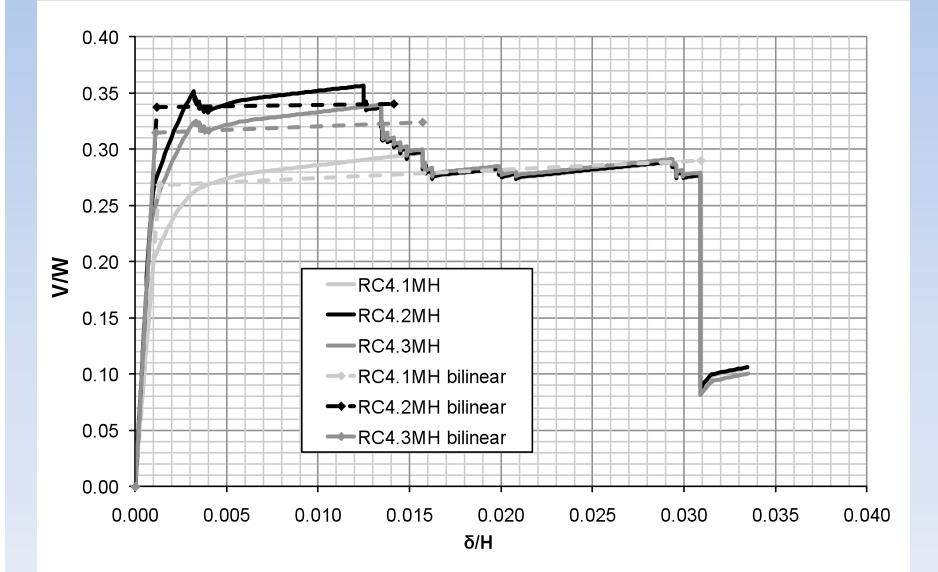


Bilinear approximations of pushover curves

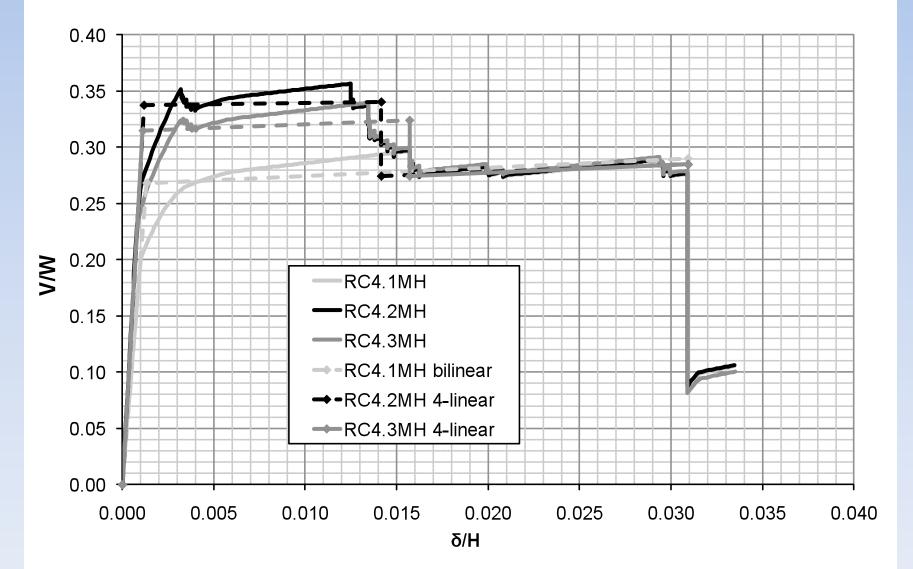

• Bilinear approximation of pushover curves using a procedure close to the FEMA/ATC guidelines (adopting the equal areas rule)

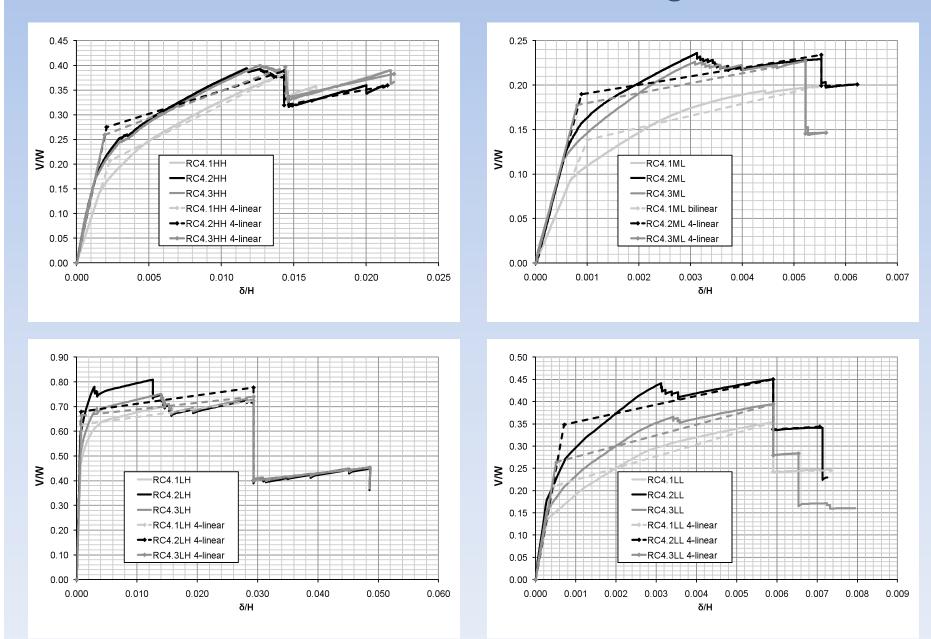
• The end of the bilinear curve is assumed at the point of significant drop in strength (15%÷25%)

 In-house developed software (BILIN) available as a stand-alone application or as a function for MS Excel



Whenever feasible a quatri-linear approach is utilized




Bilinear approximations of pushover curves

quatrilinear approximations of pushover curves (when appropriate)

Pushover curves for several building classes

WHE-PAGER forms

• The derived pushover curves were transformed to the corresponding spectral quantities ($S_a - S_d$) in order to fill in the WHE-PAGER forms

• Quantities for which no reliable data are available were left blank

WHE-PAGER PHASE 2: DEVELOPMENT OF ANALYTICAL SEISMIC VULNERABILITY FUNCTIONS									
Author:	Kappos Andreas, Panagopoulos Georgios								
Date:	15/9/2009								
Structure type (describe as broadly as possible):	ture type (describe as broadly as possible): RC4.1HL RC dual system, Low seismic code design (1959), High-rise (9 storeys), No infill walls								
Geographic or other limitations: Greece, Southern Europe									
Add rows as desired								s desired	
		Ba	isic push	over curv	e for this structur	re type			
Pushover X-axis:	Sd (cm)	Choose sp	ectral displa	acement (Sd), inches; or Roof displ	acement (Delta	r), inches. Char	nge and state u	units if desired.
Pushover Y-axis:	Sa (g)	Choose sp	ectra accele	eration (Sa),	g; or base shear (V), k	ip. Change and	state units if d	lesired.	
Elastic damping ratio:	Small-amplitude damping ratio, fraction of critical								
1st mode participation factor:	1.45	PFfR; gen	erally 1.3 to	1.5; same a	s (effective height)/(tota	al roof height)			
Effective mass coefficient:			nerally 0.7 t						
Building weight:	12457.38	W, kN. Ch	ange and st	ate units if o	esired				
How were these values & pushover points derived?									
Add rows as desired								s desired	
Pushover curve control point	Х	γ	Damping	Comment					
0	0	0	Ę	5	Control point for plottin	ng purposes			
1	3.52	0.19			apparent yield point				
2	16.97	0.20			ultimate point (15% dr	op in strength)			
3					beginning of lower plat	eau			
4					end of lower plateau				
			Oth	er reques	ted parameters				
D14	16.97	median dri	ft (in same u	units as pus	hover X-axis) associate	d with complete	structural dam	nage, i.e., drift	with 50% chance that the structur
B14	16.97 median drift (in same units as pushover X-axis) associated with complete structural damage, i.e., drift with 50% chance that the structural 0.60-0.80 logarithmic standard deviation of drift associated with complete structural damage. May need to be guessed								
Sdc	18.66 the median value of drift (in same units as pushover X-axis) associated with collapse, e.g., Sdc = (roof drift at collapse)/PFfR.								
L15	indoor fatality rate given collapse. Many contributors may be unable to provide this value. Porter, Comartin, and Holmes will fill such gap:								
PC	mean fraction of building area collapsed, given complete structural damage. Again Porter, Comartin, and Holmes will fill gaps								
kshort	If HAZUS-style damping preferred, and author can judge, this is the degradation factor for short-duration (M <= 5.5) events								
kmed	If HAZUS-style damping preferred, and author can judge, this is the degradation factor for medium-duration (M <- 3.5) events								
klong If HAZUS-style damping preferred, and author can judge, this is the degradation factor for long-duration (M >= 7.5) events									
Explain how these values were arrived at, providing citations if appropriate D14=Sd(4) for 4-linear curves or Sd(2) for bilinear curves									
For frame systems Sdc/D14=1.3 for low, 1.4 for medium and 1.5 for high code design									
For dual systems Sdc/D14=1.1 for low and 1.2 for high code design Add rows as desired									

Concluding remarks

Vulnerability parameters have been presented for almost all typical R/C building typologies that appear in Greece (and Southern Europe)

All values have been derived based solely on analytical results (pushover analyses), no experimental verification so far

> The estimation of quantities such as θ_{14} or S_{dc} is based on rather arbitrary criteria (e.g. $S_{dc} = (1.1 \div 1.3) \theta_{14}$)

> Current research activities at AUTh include:

- efforts to integrate the hybrid and the purely analytical approaches, utilizing available statistical damage data along with the pushover/capacity curves,
- analysis of additional buildings, designed using different parameters (soil type, design PGA etc.)