# Prompt Assessment of Global Earthquakes for Response

# Data for Reinforced Concrete Building Type in India (C3)

### **Analytical Study**

Nonlinear Static Pushover Analysis

- An internal frame of a four storey RC building
- A four storey RC building

Different Models Analyzed considering Different Configuration of Masonry Infill Walls (based on prevalent design methodology)

- **Bare Frame Model** (without considering strength and stiffness of infill walls in any storey)
- Fully Infilled Model (Considering infills in all the stories)
- **Open First Storey Model** (Considering infills in all but first storey)

Analysis carried out in SAP2000

### **Mathematical Model**

### Nonlinear Static Analysis:: Plastic Hinge properties



### Study of a Four Storey Frame

Building Frame Considered: Seismic zone IV, Medium Soil, 14 m high, LL: 2.0 kN/m2 at floors, 0.75 kN/m2 at roof



Plan

Elevation and designed RC sections

## Four Storey Frame...

#### Bare Frame (including only weight of infills)



Pushover Curve and Location of Plastic Hinges

- Flexural Failure of the Frame
- Damage well distributed along height

Bare Frame (including only weight of infills)



#### Bare Frame (including only weight of infills)

| 1  | WHE-PAGE                                          | R PHASE        | 2: DEVEL                                                          | OPMENT (       | OF ANALY         | TICAL SEIS       | MIC VULN        | IERABILIT        | Y FUNC        |  |  |  |
|----|---------------------------------------------------|----------------|-------------------------------------------------------------------|----------------|------------------|------------------|-----------------|------------------|---------------|--|--|--|
| 2  |                                                   |                |                                                                   |                |                  |                  |                 |                  |               |  |  |  |
| 3  | Author:                                           | Hemant B. ka   | iushik                                                            |                |                  |                  |                 |                  |               |  |  |  |
| 4  | Date:                                             | 10-Jul-09      |                                                                   |                |                  |                  |                 |                  |               |  |  |  |
| 5  | Structure type (describe as broadly as possible): | Non-Ductile R  | on-Ductile Reinforced Concrete Frame without Masonry Infill Walls |                |                  |                  |                 |                  |               |  |  |  |
| 6  | Geographic or other limitations:                  | Northern India | orthern India, Modern Building Construction                       |                |                  |                  |                 |                  |               |  |  |  |
| 7  |                                                   | As per the pre | evalent metho                                                     | d of design o  | f such building  | as in India, str | ength and stiff | ness of maso     | nry infills i |  |  |  |
| 8  |                                                   |                |                                                                   |                |                  |                  |                 |                  |               |  |  |  |
| 9  | Choice of pushover curve parameters               |                |                                                                   |                |                  |                  |                 |                  |               |  |  |  |
| 10 |                                                   | Units          | Parameter                                                         |                |                  |                  |                 |                  |               |  |  |  |
| 11 | Pushover X-axis:                                  | Sd(m)          |                                                                   | Choose spe     | ctral displacer  | ment (Sd); or l  | Roof displacer  | ment (Deltar).   | State unit    |  |  |  |
| 12 | Pushover Y-axis:                                  | Sa(g)          |                                                                   | Choose spe     | ctra accelerati  | ion (Sa); or ba  | ise shear (V).  | State units.     |               |  |  |  |
| 13 | Elastic damping ratio:                            | 0.05           |                                                                   | Small-amplit   | tude damping     | ratio, fraction  | of critical     |                  |               |  |  |  |
| 14 | 1st mode participation factor:                    | 1.2            |                                                                   | PFfR; gener    | ally 1.3 to 1.5; | ; same as (eff   | ective height)/ | (total roof heig | jht)          |  |  |  |
| 15 | Effective mass coefficient:                       | 0.96           |                                                                   | alpha1; gene   | erally 0.7 to 0. | 8                |                 |                  |               |  |  |  |
| 16 | Building weight:                                  | 1640 kN        | Weight of the                                                     | W State uni    | ts               |                  |                 |                  |               |  |  |  |
| 17 | How were these values & pushover points derived?  | Based on ana   | lytical simulat                                                   | tions of an in | termediate fra   | me of a four s   | torey building. | Actual perfor    | mace of re    |  |  |  |
| 18 |                                                   | Ref: Kaushik,  | H.B., Rai, D.                                                     | C., and Jain,  | S.K. (2009), "   | 'Effectiveness   | of some strer   | igthening option | ons for ma    |  |  |  |
| 19 |                                                   |                |                                                                   | Pushove        | r Curve for      | this struct      | ture type       |                  |               |  |  |  |
| 20 |                                                   | See Figu       | ires 1-4 for sa                                                   | mple pushov    | er curves        |                  |                 |                  |               |  |  |  |
| 21 | Pushover curve control point                      | Х              | Y                                                                 | Damping        | Comment          |                  |                 |                  |               |  |  |  |
| 22 | A                                                 | 0              | 0                                                                 | 0.13           | Damping at F     | Control point    | for plotting pu | rposes           |               |  |  |  |
| 23 | B                                                 | 0.044          | 0.17                                                              |                |                  | E.g., yield po   | int?            |                  |               |  |  |  |
| 24 | C                                                 | 0.6            | 0.19                                                              |                |                  | E.g., ultimate   | e point?        |                  |               |  |  |  |
| 25 | D                                                 | 0.83           | 0.06                                                              |                |                  | E.g., beginnii   | ng of lower pla | iteau?           |               |  |  |  |
| 26 | E                                                 |                |                                                                   |                |                  | Add rows as      | desired         |                  |               |  |  |  |
| 27 |                                                   |                |                                                                   |                |                  |                  |                 |                  |               |  |  |  |

### Four Storey Frame...

#### **Open First Storey Frame**



Pushover Curve and Location of Plastic Hinges

- No masonry infills in the first storey
- Lateral deformations accumulate at first storey
- Collapse due to shear failure of first storey columns and beams

#### **Open First Storey Frame**



#### **Open First Storey Frame**

| 1  | WHE-PAGE                                          | ER PHASE       | 2: DEVEL                                     | OPMENT (       | OF ANALY         | TICAL SEIS      | SMIC VULN       | IERABILIT        | Y FUNCT      |  |  |
|----|---------------------------------------------------|----------------|----------------------------------------------|----------------|------------------|-----------------|-----------------|------------------|--------------|--|--|
| 2  |                                                   |                |                                              |                |                  |                 |                 |                  |              |  |  |
| 3  | Author:                                           | Hemant B. ka   | aushik                                       |                |                  |                 |                 |                  |              |  |  |
| 4  | Date:                                             | 10-Jul-09      |                                              |                |                  |                 |                 |                  |              |  |  |
| 5  | Structure type (describe as broadly as possible): | Non-Ductile F  | Reinforced Cor                               | icrete Frame   | with Open Fir    | rst Storey      |                 |                  |              |  |  |
| 6  | Geographic or other limitations:                  | Northern India | lorthern India, Modern Building Construction |                |                  |                 |                 |                  |              |  |  |
| 7  |                                                   | The building v | vas originally (                             | designed with  | hout consideri   | ng strength ar  | nd stiffness of | masonry infill   | s. Large nu  |  |  |
| 8  |                                                   |                |                                              |                |                  |                 |                 |                  |              |  |  |
| 9  | Choice of pushover curve parameters               |                |                                              |                |                  |                 |                 |                  |              |  |  |
| 10 |                                                   | Units          | Parameter                                    |                |                  |                 |                 |                  |              |  |  |
| 11 | Pushover X-axis:                                  | Sd(m)          |                                              | Choose spe     | ctral displacer  | ment (Sd); or l | Roof displace:  | ment (Deltar).   | State units  |  |  |
| 12 | Pushover Y-axis:                                  | Sa(g)          |                                              | Choose spe     | ctra accelerat   | ion (Sa); or ba | ase shear (V).  | State units.     |              |  |  |
| 13 | Elastic damping ratio:                            | 0.05           |                                              | Small-amplit   | tude damping     | ratio, fraction | of critical     |                  |              |  |  |
| 14 | 1st mode participation factor:                    | 1.04           |                                              | PFfR; gener    | ally 1.3 to 1.5  | ; same as (eff  | ective height)/ | (total roof heig | ght)         |  |  |
| 15 | Effective mass coefficient:                       | 1              |                                              | alpha1; gene   | erally 0.7 to 0. | 8               |                 |                  |              |  |  |
| 16 | Building weight:                                  | 1640 kN        | Weight of the                                | W State uni    | ts               |                 |                 |                  |              |  |  |
| 17 | How were these values & pushover points derived?  | Based on ana   | alytical simula                              | tions of an in | termediate fra   | me of a four s  | torey building. | Actual perfor    | rmace of rea |  |  |
| 18 |                                                   | Ref: Kaushik,  | , H.B., Rai, D.                              | C., and Jain,  | S.K. (2009), '   | 'Effectiveness  | of some strer   | ngthening opti   | ons for mas  |  |  |
| 19 |                                                   |                |                                              | Pushove        | r Curve for      | this struct     | ture type       |                  |              |  |  |
| 20 |                                                   | See Figu       | ures 1-4 for sa                              | mple pushov    | er curves        |                 |                 |                  |              |  |  |
| 21 | Pushover curve control point                      | X              | Y                                            | Damping        | Comment          |                 |                 |                  |              |  |  |
| 22 | A                                                 | 0              | 0                                            | 0.175          | Damping at F     | Control point   | for plotting pu | irposes          |              |  |  |
| 23 | В                                                 | 0.024          | 0.15                                         |                | Yield Point      | E.g., yield po  | pint?           |                  |              |  |  |
| 24 | C                                                 | 0.47           | 0.2                                          |                | Ultimate Poir    | E.g., ultimate  | e point?        |                  |              |  |  |
| 25 | D                                                 | 0.47           | 0                                            |                | Collapse         | E.g., beginnii  | ng of lower pla | iteau?           |              |  |  |
| 26 | E                                                 |                |                                              |                |                  | Add rows as     | desired         |                  |              |  |  |
| 27 |                                                   |                |                                              |                |                  |                 |                 |                  |              |  |  |

# Four Storey Frame...

#### **Fully-Infilled Frame**



Pushover Curve and Location of Plastic Hinges

- Masonry infills in all the stories; I storey infills fail very early
- Abrupt reduction in lateral strength after failure of infills in I storey
- Very stiff structure, lateral deformations uniformly distributed along height
- Collapse due to shear failure of first storey columns and beams

#### Fully-Infilled Frame (1:0:3)



#### Fully-Infilled Frame (1:0:3)

| 1  | WHE-PAGE                                          | R PHASE                             | 2: DEVELO        | PMENT (          | OF ANALY          | FICAL SEIS      | MIC VULN         | IERABILIT        | Y FUNCTIO      |  |
|----|---------------------------------------------------|-------------------------------------|------------------|------------------|-------------------|-----------------|------------------|------------------|----------------|--|
| 2  |                                                   |                                     |                  |                  |                   |                 |                  |                  |                |  |
| 3  | Author:                                           | Hemant B. ka                        | aushik           |                  |                   |                 |                  |                  |                |  |
| 4  | Date:                                             | 10-Jul-09                           |                  |                  |                   |                 |                  |                  |                |  |
| 5  | Structure type (describe as broadly as possible): | Non-Ductile F                       | Reinforced Con   | crete Frame      | with Masonry      | Infill Walls in | all Storeys      |                  |                |  |
| 6  | Geographic or other limitations:                  | Northern India                      | a, Modern Buil   | ding Constru     | ction             |                 |                  |                  |                |  |
| 7  |                                                   | The building v                      | vas originally o | lesigned with    | nout considerii   | ng strength an  | d stiffness of i | masonry infills  | s. However, in |  |
| 8  |                                                   |                                     |                  |                  |                   |                 |                  |                  |                |  |
| 9  |                                                   | Choice of pushover curve parameters |                  |                  |                   |                 |                  |                  |                |  |
| 10 |                                                   | Units                               | Parameter        |                  |                   |                 |                  |                  |                |  |
| 11 | Pushover X-axis:                                  | Sd(m)                               |                  | Choose spe       | ctral displacer   | nent (Sd); or f | Roof displacen   | nent (Deltar).   | State units    |  |
| 12 | Pushover Y-axis:                                  | Sa(g)                               |                  | Choose spe       | ctra accelerati   | on (Sa); or ba  | se shear (V).    | State units.     |                |  |
| 13 | Elastic damping ratio:                            | 0.05                                |                  | Small-amplit     | tude damping      | ratio, fraction | of critical      |                  |                |  |
| 14 | 1st mode participation factor:                    | 1.3                                 |                  | PFfR; generation | ally 1.3 to 1.5;  | same as (eff    | ective height)/( | (total roof heig | ht)            |  |
| 15 | Effective mass coefficient:                       | 0.91                                |                  | alpha1; gene     | erally 0.7 to 0.1 | 8               |                  |                  |                |  |
| 16 | Building weight:                                  | 1640 kN                             | Weight of the    | W State unit     | ts                |                 |                  |                  |                |  |
| 17 | How were these values & pushover points derived?  | Based on ana                        | alytical simulat | ions of an in    | termediate fra    | me of a four si | torey building.  | Actual perfor    | mace of real b |  |
| 18 |                                                   | Ref: Kaushik,                       | , H.B., Rai, D.( | C., and Jain,    | S.K. (2009), "    | Effectiveness   | of some stren    | gthening optic   | ons for masonr |  |
| 19 |                                                   |                                     |                  | Pushove          | r Curve for       | this struct     | ure type         |                  |                |  |
| 20 |                                                   | See Figu                            | ures 1-4 for sai | mple pushove     | er curves         |                 |                  |                  |                |  |
| 21 | Pushover curve control point                      | X                                   | Y                | Damping          | Comment           |                 |                  |                  |                |  |
| 22 | А                                                 | 0                                   | 0                | 0.055            | Damping at F      | Control point   | for plotting pu  | rposes           |                |  |
| 23 | В                                                 | 0.015                               | 0.75             |                  | Yield Point       | E.g., yield po  | int?             |                  |                |  |
| 24 | C                                                 | 0.063                               | 1.5              |                  | Ultimate Poin     | E.g., ultimate  | point?           |                  |                |  |
| 25 | D                                                 | 0.07                                | 0.26             |                  | Beginning of I    | E.g., beginnir  | ng of lower pla  | teau?            |                |  |
| 26 | E                                                 | 0.19                                | 0.26             |                  | Lower Platea      | Add rows as     | desired          |                  |                |  |
| 27 |                                                   | 0.62                                | 0.28             |                  | Collapse          |                 |                  |                  |                |  |
| 28 |                                                   |                                     |                  |                  |                   |                 |                  |                  |                |  |

# Four Storey Building

**Building Considered:** Seismic zone V, Foundation on Rock 30.3 m Long and 9.4 m wide



## Four Storey Building...

#### **Open First Storey Building**



- No masonry infills in the first storey
- Lateral deformations accumulate at first storey
- Analysis could not be completed after failure of a few first storey columns and beams

## Four Storey Building... PAGER SHEET

#### **Open First Storey Building**



# Four Storey Building... PAGER SHEET

#### **Open First Storey Building**

| 1  | WHE-PAGE                                          | R PHASE                             | 2: DEVEL        | OPMENT         | OF ANALY         | TICAL SEIS      | SMIC VULN       | VERABILIT        | Y FUNCTIO        |  |
|----|---------------------------------------------------|-------------------------------------|-----------------|----------------|------------------|-----------------|-----------------|------------------|------------------|--|
| 2  |                                                   |                                     |                 |                |                  |                 |                 |                  |                  |  |
| 3  | Author:                                           | Hemant B. ka                        | aushik          |                |                  |                 |                 |                  |                  |  |
| 4  | Date:                                             | 10-Jul-09                           |                 |                |                  |                 |                 |                  |                  |  |
| 5  | Structure type (describe as broadly as possible): | Non-Ductile F                       | Reinforced Cor  | ndrete 4 Stor  | ey Residential   | Building with   | Open First St   | torey            |                  |  |
| 6  | Geographic or other limitations:                  | North-easterr                       | n India, Moderi | n Building Co  | instruction, No  | onductile detai | ling            |                  |                  |  |
| 7  |                                                   | The building v                      | was originally  | designed witl  | hout consideri   | ng strength ar  | nd stiffness of | masonry infill   | s. Large numbe   |  |
| 8  |                                                   |                                     |                 |                |                  |                 |                 |                  |                  |  |
| 9  |                                                   | Choice of pushover curve parameters |                 |                |                  |                 |                 |                  |                  |  |
| 10 |                                                   | Units                               | Parameter       |                |                  |                 |                 |                  |                  |  |
| 11 | Pushover X-axis:                                  | Sd(m)                               |                 | Choose spe     | ctral displace   | ment (Sd); or l | Roof displace   | ment (Deltar).   | State units      |  |
| 12 | Pushover Y-axis:                                  | Sa(g)                               |                 | Choose spe     | ctra accelerat   | ion (Sa); or ba | ise shear (V).  | State units.     |                  |  |
| 13 | Elastic damping ratio:                            | 0.05                                |                 | Small-ampli    | tude damping     | ratio, fraction | of critical     |                  |                  |  |
| 14 | 1st mode participation factor:                    | 0.9                                 |                 | PFfR; gener    | ally 1.3 to 1.5  | ; same as (eff  | ective height)/ | (total roof heig | ght)             |  |
| 15 | Effective mass coefficient:                       | 0.65                                |                 | alpha1; gen    | erally 0.7 to 0. | 8               |                 |                  |                  |  |
| 16 | Building weight:                                  | 13000 kN                            | Weight of the   | W State uni    | ts               |                 |                 |                  |                  |  |
| 17 | How were these values & pushover points derived?  | Based on ana                        | alytical simula | tions of a fou | ir storey reside | ential building | in Guwahati, .  | Assam, India.    | Actual perform   |  |
| 18 |                                                   | Ref: Bhattach                       | harya, S.K. (20 | 009), "Streng  | thening of exis  | sting open gro  | und-storey rei  | inforced concr   | ete buildings",  |  |
| 19 |                                                   |                                     |                 | Pushove        | r Curve for      | this struct     | ture type       |                  |                  |  |
| 20 |                                                   | See Fig                             | ures 1-4 for sa | mple pushov    | er curves        |                 |                 |                  |                  |  |
| 21 | Pushover curve control point                      | X                                   | Y               | Damping        | Comment          |                 |                 |                  |                  |  |
| 22 | A                                                 | 0                                   | 0               | 0.06           | Damping at F     | Control point   | for plotting pu | ırposes          |                  |  |
| 23 | В                                                 | 0.004                               | 0.1             |                | Yield Point      | E.g., yield po  | pint?           |                  |                  |  |
| 24 | C                                                 | 0.092                               | 0.4             |                | Ultimate Poir    | E.g., ultimate  | e point?        |                  |                  |  |
| 25 | D                                                 | 0.092                               | 0.4             |                | Collapse         | E.g., beginni   | ng of lower pla | ateau?           |                  |  |
| 26 | E                                                 |                                     |                 |                |                  | Add rows as     | desired         |                  |                  |  |
| 27 |                                                   | Analysis cou                        | ld not be conti | inued after P  | oint D due to f  | ailure of many  | columns in t    | he open first s  | storey of the bu |  |

## Four Storey Building...

### Fully Infilled Building



- Masonry infills in all the stories; I storey infills fail very early
- Abrupt reduction in lateral strength after failure of infills in I storey
- Very stiff structure, lateral deformations uniformly distributed along height
- Analysis could not be completed after failure of I storey infills

## Four Storey Building... PAGER SHEET

### Fully Infilled Building



# Four Storey Building... PAGER SHEET

#### **Fully Infilled Building**

| 1  | WHE-PAGE                                          | ER PHASE                            | 2: DEVEL                                                                                                        | OPMENT (       | OF ANALY         | TICAL SEIS       | MIC VULN         | IERABILIT        | Y FUNCTI       |  |
|----|---------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|------------------|------------------|----------------|--|
| 2  |                                                   |                                     |                                                                                                                 |                |                  |                  |                  |                  |                |  |
| 3  | Author:                                           | Hemant B. ka                        | aushik                                                                                                          |                |                  |                  |                  |                  |                |  |
| 4  | Date:                                             | 10-Jul-09                           |                                                                                                                 |                |                  |                  |                  |                  |                |  |
| 5  | Structure type (describe as broadly as possible): | Non-Ductile R                       | leinforced Cor                                                                                                  | icrete 4 store | ey Residential   | Building with    | Masonry Infills  | s in all Storey  | S              |  |
| 6  | Geographic or other limitations:                  | North-eastern                       | North-eastern India, Modern Building Construction, Nonductile detailing                                         |                |                  |                  |                  |                  |                |  |
| 7  |                                                   | The building v                      | The building was originally designed without considering strength and stiffness of masonry infills. However, ir |                |                  |                  |                  |                  |                |  |
| 8  |                                                   |                                     |                                                                                                                 |                |                  |                  |                  |                  |                |  |
| 9  |                                                   | Choice of pushover curve parameters |                                                                                                                 |                |                  |                  |                  |                  |                |  |
| 10 |                                                   | Units                               | Parameter                                                                                                       |                |                  |                  |                  |                  |                |  |
| 11 | Pushover X-axis:                                  | Deltar(m)                           |                                                                                                                 | Choose spe     | ctral displacer  | ment (Sd); or f  | Roof displacer   | nent (Deltar).   | State units    |  |
| 12 | Pushover Y-axis:                                  | V(m)                                |                                                                                                                 | Choose spe     | ctra accelerati  | ion (Sa); or ba  | ise shear (V).   | State units.     |                |  |
| 13 | Elastic damping ratio:                            | 0.05                                |                                                                                                                 | Small-amplit   | tude damping     | ratio, fraction  | of critical      |                  |                |  |
| 14 | 1st mode participation factor:                    | 0.87                                |                                                                                                                 | PFfR; gener    | ally 1.3 to 1.5; | ; same as (eff   | ective height)/i | (total roof heig | ght)           |  |
| 15 | Effective mass coefficient:                       | 0.72                                |                                                                                                                 | alpha1; gen    | erally 0.7 to 0. | 8                |                  |                  |                |  |
| 16 | Building weight:                                  | 13000 kN                            | Weight of the                                                                                                   | W State uni    | ts               |                  |                  |                  |                |  |
| 17 | How were these values & pushover points derived?  | Based on ana                        | alytical simula                                                                                                 | tions of a fou | ir storey reside | ential building  | in Guwahati, A   | Assam, India.    | Actual perfor  |  |
| 18 |                                                   | Ref: Bhattach                       | iarya, S.K. (20                                                                                                 | 009), "Strengt | thening of exis  | sting open gro   | und-storey reir  | nforced concr    | ete buildings" |  |
| 19 |                                                   |                                     |                                                                                                                 | Pushove        | r Curve for      | this struct      | ure type         |                  |                |  |
| 20 |                                                   | See Figu                            | ires 1-4 for sa                                                                                                 | mple pushov    | er curves        |                  |                  |                  |                |  |
| 21 | Pushover curve control point                      | X                                   | Y                                                                                                               | Damping        | Comment          |                  |                  |                  |                |  |
| 22 | А                                                 | 0                                   | 0                                                                                                               | 0.05           | Damping at F     | Control point    | for plotting pu  | rposes           |                |  |
| 23 | В                                                 | 0.003                               | 0.23                                                                                                            |                | Yield Point      | E.g., yield po   | int?             |                  |                |  |
| 24 | C                                                 | 0.018                               | 0.73                                                                                                            |                | Ultimate Poin    | E.g., ultimate   | e point?         |                  |                |  |
| 25 | D                                                 | 0.026                               | 0.47                                                                                                            |                | Beginning of     | E.g., beginnir   | ng of lower pla  | teau?            |                |  |
| 26 | E                                                 |                                     |                                                                                                                 |                |                  | Add rows as      | desired          |                  |                |  |
| 27 |                                                   | Analysis coul                       | d not be conti                                                                                                  | nued after Po  | oint D due to s  | significant redu | uction in latera | I load carryin   | g capacitry of |  |

## Limitations of the Study

• Results based on analytical simulations of typical RC buildings constructed in India.

• Strength and stiffness of masonry infill walls was not considered **while designing the structure**; only weight was considered (Prevalent design philosophy in India).

• In nonlinear analyses, compressive strut action was assumed in the masonry infills.

• Soil – Structure interaction was not considered. Buildings were assumed to be fixed at the bottom of foundation.

• Nonlinearity in RC slabs and Staircase was not considered.

Therefore, behaviour and performance of actual buildings may differ from these analytical results. 21