WHE-PAGER Project

Dr. Dina D’Ayala
Senior Lecturer

Department of Architecture and Civil Engineering
University of Bath
Seismic assessment of building stock and prediction of losses

• Input
 – Classification of buildings
 – Assignment of capacity curves
 – Definition of damage states
 – Definition of demand spectra
 – Evaluation of building response

• Output
 – Fragility curves
 – Damage scenarios
General Methodology

- Building classification by building typology
- If typologies are codified then capacity curves deduced from design standards
- Damage thresholds more difficult but theoretical correlation between damage and drift available for engineered structures
- Correlation of drift capacity and demand from displacement spectra possible
- Distribution of building stock from census by typology and use of lognormal distribution around mean average damage
- Possible calibration of fragility curves with direct damage observations.
Analytical push-over curves for non-HAZUS structures types

- Identify experimental/analytical curves existing in literature
- Document type of test/analytical procedure, representativeness, etc.
- Use FaMIVE database to extract a number of region/structure specific curves
- Compare with curves in literature
- Produce fragility curves
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>PAGER-STR</th>
<th>Description of Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>RS3</td>
<td>Local field stones with lime mortar.</td>
</tr>
<tr>
<td>9</td>
<td>RS4</td>
<td>Local field stones with cement mortar, vaulted brick roof and floors</td>
</tr>
<tr>
<td>10</td>
<td>DS2</td>
<td>Rectangular cut stone masonry block with lime mortar</td>
</tr>
<tr>
<td>11</td>
<td>DS4</td>
<td>Rectangular cut stone masonry block with reinforced concrete floors and roof</td>
</tr>
<tr>
<td>12</td>
<td>MS</td>
<td>Massive stone masonry in lime or cement mortar</td>
</tr>
<tr>
<td>14</td>
<td>UFB1</td>
<td>Unreinforced brick masonry in mud mortar without timber posts</td>
</tr>
<tr>
<td>15</td>
<td>UFB3</td>
<td>Unreinforced brick masonry in lime mortar</td>
</tr>
<tr>
<td>16</td>
<td>UFB5</td>
<td>Unreinforced fired brick masonry, cement mortar, but with reinforced concrete floor and roof slabs</td>
</tr>
</tbody>
</table>
Literature - Experimental

Benedetti et al. 1998

Brick masonry UFB3

Rubble masonry DS2
Rubble stone
RS4

Model A: without wall ties
Model C: with wall ties
\[\sigma_v = 0 \text{ MPa} \]

\[\sigma_v = 0.075 \text{ MPa} \]

Earthquake Engineering Research Institute

Griffith et al. (2004)

(a) 110 mm thick wall

(b) 50 mm thick wall

PGD = 16.6 mm

PWD = 32.5 mm

PGD = 107.6 mm

PWD > 110 mm

(a) 4 x Nahini

(b) 0.66 x El Centro

(c) 0.8 x Pacoima Dam

UNIVERSITY OF BATH
Literature Analytical

Literature Push-over Curves

UFB5 Analytical/Experimental

- Barbat, 2006
- Benedetti et al, 1998
- Tomazevic, 2007

UFB3 Analytical/Experimental

- D’Ayala, 2005
- Salonikios et al, 2003
- Yi, Moon, Leon and Kahn, 2006
- Griffith, Lam, Wilson, Doherty, 2002/2004
Regions

- Italy
- Turkey
- Iraq
- Nepal

Department of Architecture and Civil Engineering
University of Bath
Mechanisms of collapse

- Friction, identification of cracks by sliding or overturning
- Connections with other structural elements

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B1</td>
<td>B2</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>VERTICAL OVERTURNING</td>
<td>OVERTURNING WITH 1 SIDE WING</td>
<td>OVERTURNING WITH 2 SIDE WINGS</td>
<td>CORNER FAILURE</td>
<td>PARTIAL OVERTURNING</td>
<td>VERTICAL STRIP OVERTURNING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>I</th>
<th>H2</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONTAL ARCH</td>
<td>IN PLANE FAILURE</td>
<td>VERTICAL ADDITION</td>
<td>IN PLANE PIER FAILURE</td>
<td>ROOF/FLOORS COLLAPSE</td>
</tr>
</tbody>
</table>

ASSOCIATED FAILURES

- Insufficient cohesion in the fabric
Displacement based assessment

- Choice of appropriate non linear spectrum:
 - Deterministic event ⇒ site specific PGA
 - Ductility ⇒ Strength reduction factor
 - Displacement reduction factors:

\[
\begin{align*}
S_{dar} &= \begin{cases}
\left[1 + (R - 1)T_g / T \right] / R & \text{if } T < T_g \\
1 & \text{if } T > T_g
\end{cases} \\
S_{dar} &= 1 + \left(\frac{R_y - 1}{300} \right) + \frac{1}{10T^2} e^{-20\sqrt{T} / R_y}
\end{align*}
\]

\[
R = \begin{cases}
\frac{c_1(\mu - 1)}{T/T_g} + 1 & \frac{T}{T_g} \leq 1 \\
\frac{c_1(\mu - 1) + 1}{T/T_g} & \frac{T}{T_g} > 1
\end{cases}
\]
Capacity curves for vulnerability classes

- Define peak strength as collapse load factor
- Define natural period as ratio of effective stiffness and mass
- Define elastic limit displacement as
- Define Δ_u as loss of equilibrium for given mechanism
- Typical ductility range $3 < \mu < 10$

$$a_y = \lambda$$

$$T = \sqrt{\frac{m_{\text{eff}}}{K_{\text{eff}}}}$$

$$\Delta_y = \frac{a_y}{4\pi^2} T^2$$
Italy, Serravalle

Serravalle sample

- DS4
- DS2
- Benedetti et al, 1998
- RS3
- RS4
- Tomazevic, 2007
- UFB3
- UFB5
- Tomazevic, 2007
Serravalle, Italy, Correlation of FaMIVE and EMS’98, Stonework

<table>
<thead>
<tr>
<th>Procedure</th>
<th>EMS98 grade A</th>
<th>EMS98 grade B</th>
<th>EMS98 grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VULNUS</td>
<td>High and Very High</td>
<td>Medium</td>
<td>Low and Very Low</td>
</tr>
<tr>
<td>FaMIVE</td>
<td>Estreme and High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

Damage distribution \(\geq D3\) for buildings of class A

Damage distribution \(\geq D3\) for buildings of class B

Damage distribution \(\geq D3\) for buildings of class C

Department of Architecture and Civil Engineering
University of Bath
Turkey, Fener-Balat

Fener-Balat Sample

- DS2
- DS4
- UFB3
- UFB5
- Griffith, Lam, Wilson, Doherty, 2002/2004
- Tomazevic, 2007
- Benedetti et al, 1998
Displacement based damage scenario
L’Aquila, Italy

![Graph showing data points and lines for various studies in L’Aquila, Italy](image)

- **DS2**
- **DS4**
- **Benedetti et al, 1998**
- **RS3**
- **Tomazevic, 2007**
- **UFB3**
- **UFB5**
- **Tomazevic, 2007**
Comparison FaMIVE experimental for UFB5

![Graph showing comparison of FaMIVE experimental results for UFB5 with different locations and data sources.]

- Erbil
- L'Aquila
- Fener Balat
- Nocera
- Serravalle
- Benedetti et al, 1998
- Tomazevic, 2007
Cumulative total damage probability

Serravalle cumulative damage by PAGER TYPE

Cumulative Damage Probability

Spectral displacement in mm

Department of Architecture and Civil Engineering
University of Bath
Cumulative distribution over the whole sample for UFB3 and UFB5
Indian Data Concrete

Northern Indian non-ductile Concrete Frames

- Non-Ductile Reinforced Concrete Frame with Open First Storey
- Non-Ductile Reinforced Concrete Frame with Masonry Infill Walls in all Storeys
- Non-Ductile Reinforced Concrete Frame without Masonry Infill Walls
- Non-Ductile Reinforced Concrete 4 Storey Residential Building with Open First Storey
- Non-Ductile Reinforced Concrete 4 Storey Residential Building with Masonry Infills in all Storeys