

PAGER Project Phase III:

Development of Seismic Capacity Curves for Claybrick Masonry Buildings in India

Yogendra Singh¹, JSR Prasad¹, Dominik H. Lang², and Rajesh Deoliya¹

¹ Indian Institute of Technology Roorkee, Uttarakhand, India ² NORSAR/ICG, Kjeller, Norway

Failure mechanisms

Typical views of failure of masonry buildings with rigid flat floors/roofs after past earthquakes in India:

1997 Jabalpur earthquake (World Housing Encyclopedia)

2001 Bhuj earthquake

Failure mechanisms

⇒ experience from past Indian earthquakes showed that URM structures with rigid roof systems and adequate bearing of walls:

- a) generally out-of-plane failure is avoided
- b) building behaves as a monolithic box
- c) horizontal and diagonal cracks result from inadequate in-plane shear resistance leading to degradation of stiffness and strength

⇒ primary mechanisms of inplane failure modes for URM structures:

- (1) sliding shear failure
 - \rightarrow separation of wall into parts along the bed joints, which slide relative to each other
- (2) diagonal shear failure

 \rightarrow if principle tensile stresses (axial and lateral loads) exceed the tensile strength of masonry, diagonal cracking may occur along mortar joints and/or in masonry units

(3) rocking failure

 \rightarrow occurs in relatively slender piers; as horizontal load increases, bed joints crack on tension side, and failure of wall occurs when the stress on compression side of the wall reaches the compressive strength of the masonry

Existing masonry buildings in India

How to model typical URM structures considering multi-irregularities?

socio-economic level of residents: <u>middle to high income</u>

Existing masonry buildings in India

... or even these ?

(1) Selection of representative building plans:

- → based on random sample survey eight building plans for each socio-economic group (high, upper middle, middle, low inclome class) have been selected
 ⇒ 32 model plans
- \rightarrow main parameters expected to influence resistance:
 - amount of wall area per floor area in each direction, \hat{a}
 - eccentricity (distance between center of mass and center of rigidity) as a ratio of the dimension of the building, in the direction of earthquake, \hat{e}

(1) Selection of representative building plans *(cont'd)*:

→ out of the 32 model plans, five plans (Case 1 to 5) were selected for nonlinear 'pushover' analysis

Case	Dir.	Plan No.	Socio-economic level	â	ê	Selection criteria
1	Y	28	upper middle and high	7.24	4.20	\hat{a} and \hat{e} close to Mean
2	Х	6	slum and low income	7.64	9.88	\hat{a} close to Mean and \hat{e} close to Mean+ σ
3	Х	31	upper middle and high	7.84	0.01	\hat{a} close to Mean and \hat{e} close to Mean- σ
4	Y	8	slum and low income	10.93	4.23	\hat{a} close to Mean+ σ and \hat{e} close to Mean
5	Х	10	lower middle income	5.49	4.63	<i>â</i> close to Mean–σ and <i>ê</i> close to Mean

(1) Selection of representative building plans (cont'd):

 \rightarrow Case 5 Y ►X

(2) Modeling of representative buildings:

→ material properties of claybrick masonry with different types of mortar:

Mortar type	Compressive strength [<i>MPa</i>]	Shear strength [<i>MPa</i>]	Elastic modulus [<i>MPa</i>]	Reference	
1:6 cement-sand	6.00	0.39	2,000	ISET (2001)	
1:2 lime-surkhi	5.87	0.25	990	Krishna &	
clay mud	4.75	0.08	420	Chandra (1965)	

→ pushover analyses are conducted in the concerned direction of the five Cases, both for one and two-storied buildings

→ effect of **plan shape** variation is <u>negligible</u> compared with variation in **story number**

(4) Pushover analysis for <u>Case 1</u> and different <u>mortar types</u>:

Pager	Mantan	Period	Yield point		Ultimate point	
MBT	Mortar	[sec]	$S_{dy}[mm]$	$S_{ay}[g]$	$S_{du}[mm]$	$S_{au}[g]$
UFB5-1		0.14	1.27	0.22	7.5	0.25
UFB5-2	cement	0.23	2.46	0.16	14.5	0.22
UFB3-1	1. 11.	0.16	1.6	0.17	8.3	0.22
UFB3-2	lime surkhi	0.28	2.5	0.13	14.6	0.18
UFB1-1	1 1	0.2	1.54	0.134	8.0	0.18
UFB1-2	ciay mud	0.36	3.3	0.096	14.3	0.14

(4) Pushover analysis for <u>Case 1</u> and different <u>mortar types</u>:

(a) curvilinear form

(b) bi-linearised form