Type of Masonry	V _{cr}	Vu	γcr	γu	$\frac{A_H}{A_{EP}}$	ξ1	წ ₂
Unreinforced Masonry (Brick)	0.15	0.15	0.001	0.002	0	0.04	0.06
Poorly Reinforced Masonry	0.3	0.40	0.001	0.002	0.10	0.04	0.06
Confined Masonry (Solid units)	0.3	0.45	0.0015	0.005	0.15	0.05	0.06
Confined Masonry (Hollow units)	0.3	0.35	0.001	0.003	0.10	0.04	0.06
Stone Masonry (Well organized*)							
Stone Masonry (Poor**)							

^{*}Stones of different sizes constituting at least 65% of the total volume. The rest filled with sand-lime mortar

V, shear stress on the gross transverse section of a wall, typically 3x3m, MPA; they must be transformed to spectral ordinates. The two values correspond to the points defining an equivalent bilinear behavior

γ relative drift

A_H

AEP Ratio of areas enclosed in the hysteresis loop, to that of an elastoplastic loop

- $\xi_{\scriptscriptstyle 1}$ $\,$ Damping ratio of the uncracked wall (obtained from measured response of instrumented buildings to moderate EQ)
- ξ_2 Damping ratio of a wall with diagonal cracking

^{**}Rubble stones with mud mortar