Unreinforced Masonry

Brickwork is an assembly of brick units bonded together with mortar. Click HERE for an introduction to unreinforced masonry.

Report # 173 : Brick Masonry Construction in Pakistan

by Sarosh Hashmat Lodi, Abdul Jabbar Sangi, Adam Abdullah

This report provides an overview of brick masonry housing construction, which constitutes 62.38% of the total built environment of Pakistan. Brick masonry construction ranges from typical one storey houses which are common in rural areas up to three-storey buildings (common in urban areas). Buildings of this type are generally constructed without seeking any formal engineering input. Due to inherent weaknesses in the structural load carrying system and also to the usage of poor quality construction materials, this construction type has performed extremely poorly during recent earthquakes in Pakistan. Due to the lack of specific construction guidelines and the applicable building permit laws to regulate such construction techniques, an overwhelming percentage of existing as well as newer building stock is now under an increased seismic threat.
 | PDF

Report #174 : Concrete-block masonry construction in Pakistan

by Sarosh Hashmat Lodi, Abdul Jabbar Sangi, Adam Abdullah

This report provides an overview of concrete block masonry housing construction, which is generally found in urban areas of Pakistan. Block masonry covers 3.3% of the total built environment of Pakistan. Block masonry construction is the most common type in less developed urban areas, where clay is not readily available, and ranges from one-storey houses to multi-storeyed buildings. The construction is generally carried out without any technical input. There are no guidelines and laws available to regulate it; therefore, it suffers from a number of weaknesses. This construction type is highly vulnerable to seismic forces.

PDF

Report # 118 : Earring system (Shekanj) in dome-roof structures with unreinforced brick and adobe materials

by Nima T. Bekloo

This building structure derives its name from the four earrings that are constructed at the four corners of a rectangular building at the spring level of dome roof. This structural system was developed due to the lack of of wood and stone. It was widely constructed more than 3 thousand years ago, after the invention of the dome-roof structures in the Old Persian Empire (Ashkanian & Sasanian). The main problem with the dome-roof building was to transform the rectangular or polygonal plan of the group of walls into the circular plan at the spring level of dome roof. They used to construct the first row of dome and then construct another row on top of previous one with a little offset closer to the center of the dome circle and so on. That was too difficult to construct. This system was invented to resolve this problem. In this system, once the walls were constructed, four earrings (shekanj) built upon four corners of walls intersections, and then it was much easier to build a dome over these. It is an ideal system to resist vertical and gravity loads and transform them into horizontal and shear loads. For lateral loads, domes behave like trusses and distribute the load to the other parts of the structure creating a perfect load path.

PDF

Report # 117 : Four arches (Char taaqi) with dome-roof structures, and unreinforced brick and adobe materials.

by Nima T. Bekloo

The ‘Four arches’ or Char Taaqi (in Persian) derives its name from the four arches that connects tops of four timber or masonry piers enclosing the space. It is an equilateral architectural unit consisting of four arches or short Barrel vaults between four corner piers, with a dome over the central square; this square and the lateral bays under the arches or barrel vaults together constitute a room of cruciform ground plan. This structural system developed about 2500 years ago, after earring system in the Old Persian Empire (Sasanian age). Main goal of this building system was to create wide openings at four side of the structure. This building system was used for special places that carry high population like fire temple (place where Persians worshiped the Fire God), mosque, bazaar and other public places. This is not that difficult to built a dome over four arches. Further, dome structures are ideal for large span structures against gravity loads as it transforms them into horizontal and shear loads. In addition, for lateral loads, domes behave like a truss and distribute the load to other parts of the structure developing a perfect load path. This construction system has been considered, the most prominent structural system in traditional Iranian architecture. These are basically monumental buildings developed close to desert where there was not enough construction materials that could take tensile stresses.

PDF

Report # 156 : Typical Single-Story Residential Construction Practices in Trinidad and Tobago

by Richard P. Clarke, Rakesh Ramnath

Typical single-story residential construction in Trinidad and Tobago comprises 100 mm thick unreinforced clay tile or concrete block masonry (URM) load-bearing walls supporting the roof. The roofing is a 20 to 30 degree gable or hipped shape and is of approximately 0.2 to 0.5 kN/m2 in weight. It comprises galvanized steel sheets supported by timber laths or cold-formed steel Z-purlins, in turn supported by timber or structural steel rafters. The rafters are nailed or bolted to the top of the walls, without blocking between the rafters. The flexible roof cannot act as a diaphragm. The soil class ranges from IBC classes B to E. Given the significant seismic hazard for Trinidad and Tobago, (i.e. rock PGA in the range of 0.2g to 0.6g for 10% exceedance probability in 50 years), this form of residential construction is quite vulnerable.

PDF

Report # 116 : Timber Frame Brick House with Attic

by Amit Kumar, Jeewan Pundit

This type of house is used for residential purposes. The building type under study has been picked the from central part of India (Madhya Pradesh), but it is found throughout India with small or large variations. Timber is primarily used for the frame structural elements but due to an acute shortage of timber, this construction type is not practiced anymore. Various components of the building change from place to place depending on climate, socio-economic conditions, availability of material, etc. Timber frames, placed in longitudinal and traverse directions, are filled with brick masonry walls. The floor structure is made of timber planks. Most of the buildings are found to be rectangular in shape with few openings. The roofing material is usually light when it is made from galvanized iron sheets. Seismic performance of a perfectly framed building is very satisfactory. Existing old structures, however, require maintenance and strengthening (Figure-1a,1b). It has been observed that nominal cost will be incurred for introducing earthquake resistant features.

PDF

Report # 112 : Unreinforced brick masonry residential building

by Qaisar Ali

In Peshawar and adjoining areas (in northern Pakistan), the most popular residential construction is a single- or double-story unreinforced masonry building with 9-inch-thick, solid burnt-brick walls and a 5- to 6-inch reinforced-concrete roof slab. Sometimes, however, 4.5-inch solid brick walls are also used as load-bearing walls. The layout of these dwellings is usually regular, mostly rectangular, having horizontal dimensions in the range of 30 ft x 60 ft or 60 ft x 90 ft, etc. Building height rarely exceeds 35 ft. Wall connections at the corners are achieved through proper toothing. Lintels, approximately 6- to 9-inches deep, with a width equal to the wall thickness, are provided above openings. In a relatively engineered construction, however, the lintel beam runs throughout the perimeter. Similar residential buildings are also found in other cities of Pakistan, for example, in Islamabad and Lahore. In Karachi, Pakistan’s largest city, concrete frame structures with concrete-block infill walls are most often used.

PDF

Report # 99 : Traditional Nawari house in Kathmandu Valley

by Dina D’Ayala, Samanta S. R. Bajracharya

The traditional newari house is usually of rectangular plan shape and developed over three storeys. The depth of the plan is usually about six metres with façades of various widths but most commonly between 4 to 8 metres (see also Korn 1976, and NSET-Nepal 2000). The organisation of the house is usually vertical, over 3 storeys, with a spine wall running through the height, creating front and back rooms. At the upper storey the spine wall is sometimes replaced by a timber frame system so as to create a larger continuous space. The staircase is usually a single flight to one side of the plan. The typical interstorey height is quite modest, between 2.20 and 2.50 m., including the floor structure. The bathroom, where present, is found at ground floor, while the kitchen is on the top floor, usually directly under the roof. The first floor is traditionally used as bedrooms, while the second floor is used as living room and for visitors’ reception. There are essentially two types of clusters of houses, either in long arrays, or around a court or chauk . In some cases the two types of clusters are adjacent with some units in common. In the arrays each house has front and back façade free. The construction of each unit is usually independent so that the facades are not continuum over party walls but each unit forms a separate cell. In such cases connection between façades and sidewalls are usually very good. The most interesting characteristic of these buildings both from an architectural and seismic point of view is the presence of the timber frame. Usually at ground floor, on the facade, to provide an open space for workshops or shops. It is also found internally at the upper storeys. In some cases the masonry only forms the outer shell while the internal structure is all made of timber elements. In the better built example of this typology there are a number of construction details, usually made of timber, which, coupled with the brick masonry walls, substantially improve the seismic performance of the overall structure. These features are best preserved in older examples. Currently these buildings are substantially being altered by use of western materials and technology, typically adding concrete frames as upper storeys. This type of intervention highly increases the vulnerability of the existing buildings.

HTML | PDF

Report # 91 : Single-storey brick masonry house (EMSB1)

by Mehedi Ansary

This is a one-story brick masonry house of fired bricks with cement or lime mortar; roof is either GI sheet or another material. These houses can be seen throughout Bangladesh. During the 1918 Srimangal, 1930 Dhubri, and other recent earthquakes, this type of housing suffered heavy damage. Houses with a continuous lintel suffered less.

PDF

Report # 85 : One family one storey house, also called “wagon house”

by Maria D. Bostenaru, Ilie Sandu

This is one of the oldest housing types in Romania with a statistically significant number of buildings in existence. The overwhelming majority of residential buildings in Romania have been built after 1850. Today. only churches remain from the previous “post-Byzantine” period. Issues relating to the age of historical buildings of cultural value are also discussed within the report. This urban housing type is particularly common in Romanian towns, especially in the southern part of the country, such as in the former Wallachia. It is a middle-class family house constructed from the end of the 19th century until the Second World War. The houses were designed to be semidetached, but have been constructed individually. Thus, in most of cases, the adjacent building, separated structurally, is a totally different construction type, The design of this housing is astonishingly homogeneous, especially considering the relatively lengthy time span the construction has been practiced. The single-unit housing is generally characterized by a rectangular, elongated-shape plan, with an entrance on the long side. The load-bearing system consists of two longitudinal unconfined brick masonry walls and several transversal unconfined brick walls, usually 28 cm thick, which form a wagon-like arrangement — hence the name of this building type. The horizontal structural system is made out of wood plates and joists separated by a distance of 0.70 m. Buildings of this type have been affected by damaging earthquakes in November 1940 and in March 1977, and by two earthquakes of lower magnitudes in 1986 and 1990. They performed well except for the occurrence of some minor cracking in the plaster.

PDF