World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering <u>Research Institute</u> (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Low-strength dressed stone masonry buildings

Report #	80
Report Date	15-08-2002
Country	INDIA
Housing Type	Stone Masonry House
Housing Sub-Type	Stone Masonry House : Dressed stone masonry (in lime/cement mortar)
Author(s)	Ravi Sinha, Vijaya R. Ambati
Reviewer(s)	Marjana Lutman

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

Construction of stone masonry buildings using easily available local materials is a common practice in both urban and rural parts of India. Stone masonry houses are used by the middle class and lower middle class people in urban areas, and by all <u>classes</u> in rural areas. In rural areas, these buildings are generally smaller in size and are used as single-story, single-family housing. In urban areas, these buildings are up to 4 stories high and are used for multifamily housing. This is a typical load-bearing construction, in which both gravity and lateral loads are resisted by the walls supported by strip footing. If the locally available stone is soft, dressed (shaped) stones are commonly used and can be chiselled at low- or moderate cost. Mud or lime mortar has been used in traditional constructions; however, more recently, cement mortar is being increasingly used. Because soft sandstone is readily available in the Kutch region of Gujarat in the western part of India, stone block masonry constructions are widely used for both single- and multi-story constructions. These houses are usually built by local artisans without formal training and the resulting constructions are structurally weak and incapable of resisting large seismic forces. In the Kutch region, which was affected by the 2001 Bhuj earthquake, this construction type is commonly used with a gable end timber roof truss or RCC roof slabs. Thousands of these houses collapsed in the 2001 Bhuj earthquake resulting in the deaths of large numbers of people. This construction type is inherently unsuitable for areas of moderate-to-high seismic hazard, such as the Kutch region of Gujarat.

<u>1. General Information</u>

Buildings of this construction type can be found in urban and rural areas throughout India. A very large proportion of the building stock in the Kutch region of Gujarat affected by the 2001 Bhuj earthquake was of this construction type. This type of construction is also used in other regions of India with lower seismic hazard where soft stone is easily available. This type of housing construction is commonly found in both rural and urban areas. This construction type has been in practice for more than 200 years.

Currently, this type of construction is being built. Since the 2001 Bhuj earthquake, this construction type has been permitted in the Kutch district only with suitable earthquake-resistant features specified in IS 4326-1993.

Figure 1: Typical Suburban Building

Figure 3: Key Load-Bearing Elements

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. When separated from adjacent buildings, the typical distance from a neighboring building is 5 meters.

2.2 Building Configuration

The buildings are typically rectangular or have another regular shape. The number of openings in each floor depends on the number of housing units existing on that floor. There are typically 8 doors and 10 windows in a typical 2-bedroom housing unit. The window size ranges from 1.0m X 1.2m to 2.0m X 1.2m and the door size ranges from 0.75m X 2.1m to 1.0m X 2.1m. The doors are usually located at wall junctions and the windows at both the center and corners of the wall.

2.3 Functional Planning

The main function of this building typology is multi-family housing. These are primarily used as single-family houses in rural areas and as multiple housing units in urban areas. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. All external doors of single-storeyed houses can be used for escape. In multi-storeyed construction, also a single staircase is typically available for escape. In both rural and urban areas, the windows generally have metal grills, and can not be used as a means of escape.

2.4 Modification to Building

Significant structural modifications to these buildings have not been observed. However, in rural and semi-urban areas, construction may be carried out incrementally.

Figure 4: Plan of a Typical Building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Stru	cture #	Subtypes	Most appropriate type
	Stone Masonry	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	waiis	2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adoba / Fauthon Walls	4	Mud walls with horizontal wood elements	
	Adobe/ Earthen wans	5	Adobe block walls	
Masonry		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
	walls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
	Reinforced masonry	14	Stone masonry in cement mortar	

		15 n	Clay brick masonry in cement nortar	
		16 c	Concrete block masonry in ement mortar	
		17 F	ilat slab structure	
		18 0	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19 E	Designed for seismic effects, vith URM infill walls	
		20	Designed for seismic effects, vith structural infill walls	
		21 L	Dual system – Frame with hear wall	
Structural congrete		22 N	Moment frame with in-situ hear walls	
Structural concrete	Structural wall	23 N	Moment frame with precast hear walls	
		24 N	Moment frame	
		25 P	Prestressed moment frame vith shear walls	
	Precast concrete	26 I	arge panel precast walls	
		27 ^S	hear wall structure with valls cast-in-situ	
		28 S	whear wall structure with precast wall panel structure	
		29 N	With brick masonry partitions	
	Moment-resisting frame	30 N	With cast in-situ concrete valls	
Steel		31 N	With lightweight partitions	
	Reared frame	32 p	Concentric connections in all panels	
		33 f	Eccentric connections in a ew panels	
	Stavetyrel well	34 E	Bolted plate	
		35 N	Welded plate	
		36 I	Thatch	
	Load-bearing timber frame 4 4 4	37 <mark>N</mark> a	Walls with bamboo/reed mesh nd post (Wattle and Daub)	
		38 b 16	Masonry with horizontal peams/planks at intermediate evels	
Timber		39 F 8	Post and beam frame (no pecial connections)	
		40 v	Wood frame (with special connections)	
		41 p	itud-wall frame with Jywood/gypsum board heathing	
		42 W	Wooden panel walls	
	Seismia protection	43 E	Building protected with base-isolation systems	
Other	persinic protection systems	44 <mark>E</mark> s	Building protected with eismic dampers	
	Hybrid systems	45 o	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is stone masonry walls. The gravity load-bearing system consists of the walls which carry the floor and roof loads. The walls, in turn, transmit the loads to the foundations, which consist of strip footings, which vary in depth from 0.5m to 2.0 m (depending on the number of stories and the local soil conditions). Most rural houses have gable end timber roof truss with conventional or Mangalore type clay tiles as roofing resting on bamboo or timber

purlins. The urban constructions and other multi-storeyed buildings have used reinforced concrete (RCC) floor slabs.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is stone masonry walls. This housing type is characterized with rather poor lateral load resistance. Lateral loads are resisted by the stone masonry walls; however, due to the low strength of walls in these constructions (due to use of low-strength mortar and absence of earthquake-resistant features), the walls are vulnerable to earthquake effects. In single-storey constructions, the roof may consist of wall-supported flexible truss, which is not effective in distributing the storey-level inertia forces to the different resisting elements. In these constructions, openings are often found near the corners which further weaken their resistance to lateral loads.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 15 and 20 meters, and widths between 7.5 and 10 meters. The building has 1 to 4 storey(s). The typical span of the roofing/flooring system is 5 meters. The typical storey height in such buildings is 3 meters. The typical structural wall density is none. 5% - 10%. The wall density is the same in both directions.

3.5 Floor and Roof System

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)	\checkmark	\checkmark
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
Timber	Wood planks or beams that support clay tiles		
	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below	V	V

The flooring system could be either of these two choices. Most recent constructions in urban areas use RCC floor and roof slabs.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
	Steel bearing piles	
Deep foundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

Figure 5: Key details: multi-wythe wall construction

Figure 6: Key details: section through a single-wythe wall

Figure 7: Key details: stone lintels

Figure 8: Key details: size of stones used in construction

Figure 9: Key details: foundations

SECTION OF 14" WALL SECTION OF 14" WALL SECTION OF 14" WALL UPTO MINIMUM SEC OF SOL 20 MT /PER SOL ML JUTO MINIMUM SEC OF SOL 20 MT /PER SOL ML DOUDDTION DETAILS

Figure 10: Key details: rubble stone masonry strip footings

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 5-10 housing unit(s). 8 units in each building. In rural areas, each building typically consists of a single housing unit. The number of inhabitants in a building during the day or business hours is 5-10. The number of inhabitants during the evening and night is more than 20.

4.2 Patterns of Occupancy

In rural areas, each house may be occupied by a single family. In urban areas where multi-storeyed housing blocks are also used, up to 16-20 housing units may be constructed in each building (of 4 storeys).

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	

Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 2 bathroom(s) without toilet(s), 2 toilet(s) only and 2 bathroom(s) including toilet(s).

In rural areas, the houses may not have bathrooms or latrines at all. .

4.4 Ownership

The type of ownership or occupancy is renting and outright ownership.

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/ Architectural Statement Feature		Most appropriate type			
		Yes	No	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.	V			
Building Configuration	The building is regular with regards to both the plan and the elevation.	V			
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.		V		
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.		V		
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.	V			
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls);	V			

	Less than 13 (unreinforced masonry walls);		
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are doweled into the foundation.		
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps	V	
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.	V	
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).	V	
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).		
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)	V	
Additional Comments			

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall	-Very thick load-bearing walls constructed with poor quality materials; -Absence of headers and through stones in multi-wythe walls and use of mud mortar; -Poor wall connections; -Absence of any earthquake-resistant features such as horizontal bands and vertical reinforcement.		-Out of plane wall failure; -Failure of wall corners and junctions; -Bulging type failure of the wall; -Vertical shearing of wall; -Shear failure of walls near openings.
Frame (Columns, beams)			
Roof and floors	- Inadequate timber roof joists-wall connections; - Use of tiled roofs, especially with Mangalore clay tiles, makes the roof very heavy; - Poor quality of timber used in roof truss construction; - Lack of timber protection against termites and weather effects Absence of horizontal bracing between the roof trusses.		-Movement of roof relative to the wall causing sliding of roof structure and complete failure in some cases.
Other			

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *B: MEDIUM-HIGH VULNERABILITY (i.e., poor seismic performance)*, the lower bound (i.e., the worst possible) is A: HIGH VULNERABILITY (i.e., very poor seismic performance), and the upper bound (i.e., the best possible) is *D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance)*.

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	C	D	E	F

Class		_				
Class	 √			 √	1	1
	_	_	_	_	_	

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1819	Kutch, Gujarat	8.1	XI (MSK)
2001	Bhuj, Gujarat	7.6	X (MSK)

During the 2001 Bhuj earthquake, a very large number of stone masonry houses collapsed or were severely damaged, resulting in a large number of casualties. Old stone masonry houses, which were typicaly constructed using mud or lime mortar performed very poorly and exhibited brittle collapse. Thick multi-wythe walls experienced separation of wythe resulting in loss of strength. Stone masonry houses constructed with cement mortar exhibited relatively higher resistance to the earthquake. However, the number of such houses was very small. It is interesting that "engineered" stone masonry houses, which were designed with technical assistance from Architect and Engineers also did not have earthquake-resistant

features as specified in the Indian Code of Practice for such structures.

Figure 11: Seismic deficiencies: collapse of stone masonry building due to inadequate wall connections (2001 Bhuj earthquake)

Figure 12: Seismic deficiencies: in-plane shear wall failure (2001 Bhuj earthquake)

Figure 13: Seismic deficiencies: improper wall-concrete floor slab connection resulting in the out-of-plane wall

Figure 14: Seismic deficiencies: separation of wall wythes due to absence of through-stones (2001 Bhuj earthquake)

Figure 15: Seismic deficiencies: poor mortar strength in stone masonry walls resulting in the wall collapse (2001 Bhuj Earthquake)

Figure 16: Earthquake damage: complete collapse of a stone masonry building due to inadequate mortar strength (2001 Bhuj Earthquake)

Figure 17: Earthquake damage: out-of-plane wall corner failure (2001 Bhuj Earthquake)

Figure 18: Building Collapse due to Lack of Earthquake Resistant Features (2001 Bhuj Earthquake)

Figure 19: Building Collapse due to the Torsional Motion of Reinforced Concrete (RCC) Roof Slab (2001 Bhuj Earthquake)

<u>6. Construction</u>

6.1 Building Materials

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls	Rectangular sandstone masonry blocks with mud or cement mortar	Compressive strength of masonry varies between 30- 50 kg/sq.cm	Cement mortar mix (1:6 cement/sand)	Both the masonry blocks and mortar have low strength
Foundation	Uncoursed stone rubble masonry with mud or cement mortar	Compressive strength of masonry varies between 30- 50 kg/sq.cm	Cement mortar mix (1:6 cement/sand)	Mortar has low strength
Frames (beams & columns)				
Roof and floor(s)	l'imber with clay tiles, and reinforced concrete (RCC) floor slabs in urban constructions	Concrete compressive strength 10 -15 MPa for RCC floor slabs	Concrete mix 1:2:4 (cement/sand/aggregate)	RCC construction quality is generally very poor with improper mixing and inadequate curing

6.2 Builder

In rural areas, the owner typically lives in this construction type. In urban areas, such dwellings are also sometimes built by developers for sale.

6.3 Construction Process, Problems and Phasing

The construction process is totally manual and very low-tech. The local stone blocks are purchased along with rubble stones for foundation. The construction is carried out by local skilled or semi-skilled artisans with the assistance of unskilled assistants. Engineers and architects are generally not involved in the process. The construction of this type of housing takes place incrementally over time. Typically, the building is originally not designed for its final constructed size.

6.4 Design and Construction Expertise

This construction type generally does not utilize engineering skills. The local artisans carry out the construction with the assistance of unskilled labor. The engineers and architects do not have any role in the entire design and construction process.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. IS 4326-1993 (Earthquake resistant design and construction of buildings - code of practice). The year the first code/standard addressing this type of construction issued was 1976. IS 4326-1993. The most recent code/standard addressing this construction type issued was 1993. Title of the code or standard: IS 4326-1993 (Earthquake resistant design and construction of buildings - code of practice). Year the first code/standard addressing this type of construction issued: 1976 National building code, material codes and seismic codes/standards: IS 4326-1993 When was the most recent code/standard addressing this construction type issued? 1993.

There is no mechanism for enforcement of the relevant building codes.

6.6 Building Permits and Development Control Rules

This type of construction is a non-engineered, and authorized as per development control rules.

This construction is typically NOT authorized per development control rules in urban areas unless earthquake-resistant features are incorporated. Building permits are not required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s) and Tenant(s).

6.8 Construction Economics

The construction cost varies between 2500 - 3500 Rs/sq.m. (US\$60-90/m.sq.) of built area. The lower cost corresponds to poor quality stone blocks and use of mud or lime mortar, while the higher cost corresponds to urban constructions with cement mortar. Each housing unit in rural area takes around 8-12 man-months (counting skilled man-months only) for construction. Only one or two skilled artisans are used, while the remaining are unskilled workers.

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Strengthening of Existing Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used
Inadequate lateral load resistance of masonry walls due to the	Lateral strength of masonry units can be increased by inserting new walls in one or both
absence of through stones in the walls	directions; through-stones can also be added to tie the wythes.
Inadequate timber roof joists-wall connections	Installation of proper roof-wall connections; addition of vertical reinforcement at the corners
	to tie the intersecting walls.
Heavy clay roofing tiles	Tiled roofs are replaced by corrugated iron or asbestos sheet roofing.
Absence of horizontal bracing between trusses along with	Roof trusses are braced by welding or clamping with suitable diagonal bracing members in
vertical post and improper connections.	vertical as well as horizontal planes.

Strengthening of New Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used
Use of horizontal bands at plinth, lintel and	Use of bands ties the walls together and ensures effective load transfer under earthquake loading
roof levels	

Vertical reinforcement adjacent to openings and at the wall corners	Vertical reinforcement confines the masonry under earthquake loading and increases its earthquake resistance.
Rigid concrete (RCC) roof slabs or light-	Concrete (RCC) roof slabs are very effective in transferring the inertia forces between the different walls. Use of
weight truss roof	low weight truss roof reduces the inertia force under earthquake loading.

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

After the 2001 Bhuj earthquake, the existing stone masonry structures in Kutch district are to be retrofitted as described above by the individual house owners.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? The strengthening is to be carried out to both damaged as well as undamaged structures.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction?

There is no effective inspection and monitoring mechanism.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

The constructions do not use engineers, and are carried out by the contractor or the owner.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? Not applicable.

Figure 20: Seismic strengthening of stone walls using steel wire-mesh and mortar

OVERALL ARRANGEMENT OF REINFORCING LOW STRENGTH MASONRY BUILDINGS

Figure 21: Seismic strengthening technologies: an overview of key seismic strengthening provisions

Figure 22: Seismic strengthening technologies: typical wall reinforcement details

Reference(s)

- 1. IS:4326-1993 Code of Practice for Earthquake Resistant Design and Construction of Buildings Bureau of Indian Standards, New Delhi 1993
- 2. IS:13935-1993 Repair and Seismic Strengthening of Buildings Guidelines Bureau of Indian Standards, New Delhi 1993

- 3. IS:13828-1993 Improving Earthquake Resistance of Low Strength Masonry Buildings Guidelines Bureau of Indian Standards, New Delhi 1993
- 4. IS:1905-1987 Code of Practice for Structural Use of Unreinforced Masonry Bureau of Indian Standards, New Delhi 1987
- The Bhuj Earthquake of January 26, 2001: Consequences and Future Challenges Sinha, R. Indian Institute of Technology, Bombay, April 2001 (available at http://www.civil.iitb.ac.in/BhujEarthquake/Cover_Page.htm) 2001

Author(s)

- Ravi Sinha Professor, Civil Engineering Department, Indian Institute of Technology Bombay Civil Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, INDIA Email:rsinha@civil.iitb.ac.in FAX: (91-22) 2572-3480, 2576-7302
- Vijaya R. Ambati Research Associate, Dept. of Civil Engineering, Indian Institute of Technology Powai, Mumbai 400 076, INDIA Email:vrambati@yahoo.co.in

Reviewer(s)

 Marjana Lutman Research Engineer

 Slovenian National Building & Civil Engineering In Ljubljana 1000, SLOVENIA Email:marjana.lutman@zag.si FAX: (386) 1 2804 484

Save page as

