World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Traditional oval-shaped rural stone house

Report #	47
Report Date	05-06-2002
Country	NEPAL
Housing Type	Stone Masonry House
Housing Sub-Type	Stone Masonry House : Rubble stone without/with mud/lime/cement mortar
Author(s)	Yogeshwar K. Parajuli, Jitendra K Bothara, Bijay K. Upadhyay
Reviewer(s)	Richard D. Sharpe

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This is a typical rural construction concentrated in the central mid-mountain region, particularly in the Kaski, Syangja, Parbat, and Baglung districts. (The country is divided into 75 administrative districts.) These primarily residential buildings are basically loose-fitting, load-bearing structures, constructed of uncoursed rubble stone masonry walls and a timber structure for the floor and roof. Village artisans play a pivotal role in these owner-built

buildings. Because of the loss of integrity during an event, they are expected to be extremely vulnerable from the effects of an earthquake.

1. General Information

Buildings of this construction type can be found in in Kaski, Syangja, Parbat, and Baglung districts of Central Mid Mountains of the Western Development Region of Nepal (Nepal is divided into five development regions and seventy five districts which are further subdivided into small political units (56 municipalities and some 4000 Village Development Committees). The percentage of this building type in the total stock as well as total population inhibiting this building type is unknown. This type of housing construction is commonly found in rural areas.

These buildings are being gradually replaced by more modern building types even in rural areas.

This construction type has been in practice for more than 200 years.

Currently, this type of construction is being built. .

Figure 1: Typical Building

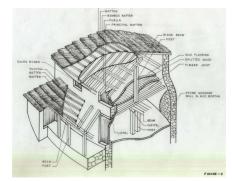


Figure 2: Key Load-Bearing Elements

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat, sloped and hilly terrain. They do not share common walls with adjacent buildings. It is minimum distance usually When separated from adjacent buildings, the typical distance from a neighboring building is 10 meters.

2.2 Building Configuration

Building plan is oval in shape. Typically three to four openings are provided in each story, one for door and rest for windows in main building. Front façade has more openings than the back. Openings are limited in size. Openings constitute some 15-20% of total wall length. Spacing between openings is generally more than twice the length of opening.

2.3 Functional Planning

The main function of this building typology is single-family house. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. Buildings of this type haven't additional door besides the main entry.

2.4 Modification to Building

There aren't modifications of bearing structures in these buildings usually.

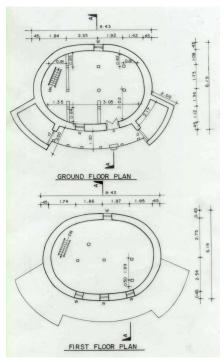


Figure 3: Plan of a Typical Building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Structure	#	Subtypes	Most appropriate type
	Stone Masonry Walls	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	w ans	2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
	Adobe/ Earthen waiis	5	Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	w alls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	

	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural concrete	Structural wall	22	Moment frame with in-situ shear walls	
		23	Moment frame with precast shear walls	
		24	Moment frame	
		25	Prestressed moment frame with shear walls	
	Precast concrete	26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
		29	With brick masonry partitions	
	Moment-resisting frame	30	With cast in-situ concrete w alls	
		31	With lightweight partitions	
Steel	Braced frame	32	Concentric connections in all panels	
		33	Eccentric connections in a few panels	
	Structural wall	34	Bolted plate	
		35	Welded plate	
			Thatch	
		37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
		38	Masonry with horizontal beams/planks at intermediate levels	
Timber	Load-bearing timber frame	39	Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
	41	41	Stud-wall frame with plywood/gypsum board sheathing	
		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
Other	Seismic protection systems	44	Building protected with seismic dampers	
	Hybrid systems	45	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is stone masonry walls. The gravity loads of the main building are carried by load bearing walls. Floor and roof are constructed of timber, which transfers their loads to the walls (typical thickness 450 mm - 600 mm), which carries the load to the foundation. These walls are carried by a strip foundation of uncoursed

rubble stone masonry. The veranda (annex to the main building) is a lean-to structure to main building, which is supported by timber posts at one end. These posts are generally supported by an above-ground stone pedestal (no anchorage between stone and post). No rigid connection is made between column and beam being supported.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is stone masonry walls. The load bearing walls carry the lateral loads. The masonry walls thus act as shear walls. The building has only a perimeter wall, which endoses the building space and also carries the loads. The roof and floor are loose fit timber structures, which act as flexible diaphragm and are not able to transfer the lateral load to wall piers according to their stiffness.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 10 and 10 meters, and widths between 8 and 8

meters. The building is 2 storey high. The typical span of the roofing/flooring system is 1.7 meters. Typical Plan Dimensions: Length varies from 8 to 10 meters. Width varies from 6 to 8 meters. Typical Story Height: Typical story height is 2 - 2.2 meters. Typical Span: Span between the supports of floor and walls ranges from 1.5 to 2 meters usually. The building is oval shaped and there does not exist any internal walls for separating internal space, so the concept of span is not applicable. The typical storey height in such buildings is 2.2 meters. The typical structural wall

density is more than 20%. Total wall density (total plan area of wall/ total plinth area) is around 25%.

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
Timber	Wood planks or beams that support clay tiles		
Timber	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below		

3.5 Floor and Roof System

Wood planks (or fire wood) and joists covered with thick mud overlay. Floor and roof structures are loose-fit elements, as if one component is stacked over the other (without any nailing). These therefore behave as flexible

diaphragm. In past earthquakes such floors were just scattered due to shaking.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep toundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

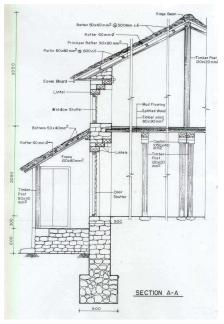


Figure 4: Critical Structural Details

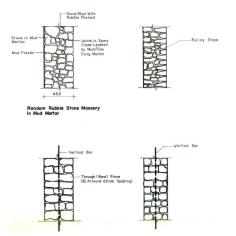


Figure 5: An Illustration of Key Seismic Features and/or Deficiencies

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 1 housing unit(s). 1 units in each building. The number of inhabitants in a building during the day or business hours is less than 5. The number of inhabitants during the evening and night is 5-10.

4.2 Patterns of Occupancy

Single/ multiple families both live in a single house.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

A pricing system does not exist because of informal housing production mechanism.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are no bathroom(s) without toilet(s), no toilet(s) only and no bathroom(s) induding toilet(s).

This building type does not comprise attached toilet or bathroom. In the past, there were no latrines or bathrooms available in this type of house. Presently, toilets are constructed but away from the houses and in isolation.

1

4.4 Ownership

The type of ownership or occupancy is outright ownership.

1

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/		Most appropriate type			
Architectural Feature	Statement	Yes	No	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.				
Building Configuration	The building is regular with regards to both the plan and the elevation.				
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.				
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.				
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.				
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);				
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are doweled into the foundation.				
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps				
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between				

	the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.		
	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).		
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).		
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)		
Additional Comments			

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall	- Binding material (mortar) for walling unit is too weak Walling units are irregular Absence of through stones.		
Frame (columns, beams)	- Inadequate beam-to-column connection and beam-to-wall connection No anchorage between timber posts and foundation.		
Roof and floors	- Flexible No interconnection between different structural elements No connection between walls and floor/ roof (in general) Heavy floor.		

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *A*: HIGH VULNERABILITY (*i.e., very poor seismic performance*), the lower bound (i.e., the worst possible) is A: HIGH VULNERABILITY (i.e., very poor seismic performance), and the upper bound (i.e., the best possible) is *B: MEDIUM-HIGH VULNERABILITY (i.e., poor seismic performance*).

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability Class	А	В	C	D	E	F

5.4 History of Past Earthquakes

Date Epicenter, region Magnitude Max. Intensity

No medium or major earthquakes observed in the area to date in known history (oral or written) so the performance of these buildings in a real earthquake is largely unknown. But buildings with similar construction materials and technology (but with different plan shape) have performed extremely poorly in past earthquakes.

6. Construction

6.1 Building Materials

	Building material		Mix proportions/dimensions	Comments
Walls			Irregular boulders (size 200-300mm or less).	Slates, lime stone, quartzite.
Foundation	Mud.	Very low compressive strength and no tensile strength.		Used for mortar.
(beams &	Soft and hard wood.		Depending on structural value of the member.	Hard wood used for members of high structural value (e.g. Columns, principal beams) where as softwood used for members with relatively low structural value (e.g. Joists, purlins)
II	Timber/ bamboo.	Not known		Difficult to define because of selected use of multiple species.

6.2 Builder

Yes, builders/ owners live in this construction type (house owner himself is part of construction team).

6.3 Construction Process, Problems and Phasing

The walls are constructed in a random uncoursed manner by using irregular stones bound with mud mortar. The stones are collected from quarries, riverbed or field, sometimes partially dressed. Space between interior and exterior wythes is filled with small stones and mud. The joists and rafters are just placed on walls without any anchorage or connection. These buildings are owner-built where village artisans play pivotal role. Simple tools such as chisels,

hammers, saw etc are used for construction. The construction of this type of housing takes place in a single

phase. Typically, the building is originally designed for its final constructed size.

6.4 Design and Construction Expertise

The artisans are without any formal training. The construction know-how is transferred from generation to generation or the people learn the process on site in a very informal way. The head mason s skilled but the level of know-how varies from person to person. No standard or minimum requirement exists for head or any other mason. The rest of the working team is composed of semi or unskilled personnel. Engineers / architects / technicians are not involved in this construction type.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. NBC203 : Guidelines for Earthquake Resistant Building Construction: Low Strength Masonry (Draft). Title of the code or standard: NBC203 : Guidelines for Earthquake Resistant Building Construction: Low Strength Masonry (Draft).

There is no process for Building Code enforcement in rural areas (Village Development Committee areas) of Nepal.

6.6 Building Permits and Development Control Rules

This type of construction is a non-engineered, and not authorized as per development control rules.

The building by-laws, building permit process and building construction controlling monitoring mechanisms only exists in municipalities and not in Village Development Committee (local authority at village level- rural areas). This is basically a rural house type where the building permit process does not exist. If this type of housing were to be constructed in a municipality, it would have to pass through the formal process (but the process does not require

approval of structural drawings for this size of building). Present bylaws or regulation do not prohibit the construction of this type of building in municipal areas. Building permits are not required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s).

6.8 Construction Economics

Cash flow in such construction is very minimal so it is difficult to price the building cost. 120 - 150 man-days (excluding effort required for collection of construction materials).

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable. Not applicable.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Strengthening of Existing Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Roof/ floor	Enhancement of integrity, anchorage with walls, bracing		
Walls	Insertion of bond stones, bandages at different levels, splint at critical sections		
Timber Frame	nber Frame Bracing of frame (knee bracing, diagonal bracing) to strengthen beam-column connection, anchorage of column to found		

Strengthening of New Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Roof/ floor	Enhancement of integrity, anchorage with walls, bracing		
Walls	Use of cement mortar, use of bond stones, bands at different levels , vertical bars at critical sections		
Timber frame	ber frame Knee or diagonal bracing of beam-column joints, connection of column to foundation		

Roof/ floor Enhancement of integrity, anchorage with walls, bracing Walls Insertion of bond stones, bandages at different levels, splint at critical sections Timber Frame Bracing of frame (knee bracing, diagonal bracing) to strengthen beam-column connection, anchorage of column to foundation Roof/ floor Enhancement of integrity, anchorage with walls, bracing Walls Use of cement mortar, use of bond stones, bands at different levels, vertical bars at critical sections

Timber frame Knee or diagonal bracing of beam-column joints, connection of column to foundation.

8.2 Seismic Strengthening Adopted

8.3 Construction and Performance of Seismic Strengthening

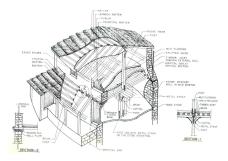


Figure 6: Illustration of Seismic Strengthening Techniques

Reference(s)

Planning 1994

- Appendix-A: Prototype Building inventory; the Development of Alternative Building Materials and Technologies for Nepal UNDP/UNCHS (Habitat) Sub-project Nep 88/054/21.03, His Majesty's Government of Nepal, Ministry of House and Physical
- 2. NBC 203 Guidelines for Earthquake Resistant Building Construction: Low Strength Masonry UNDP/UNCHS (Habitat) Sub-project Nep 88/054/21.03, His Majesty's Government of Nepal, Ministry of House and Physical Planning 1994

Author(s)

- Yogeshwar K. Parajuli Architect/National Team Leader, Nepal National Building Code Development Project C/O TAEC Consult P. Ltd., Shankhamul Kathmandu , NEPAL Email:taec@mos.com.np FAX: -497471
- Jitendra K Bothara Senior Seismic Engineer, Beca Carter Hollings & Ferner 77 Thorndon Quay, Wellington, , NEW ZEALAND Email:jitendra.bothara@gmail.com FAX: 64-4-496 2536
- 3. Bijay K. Upadhyay Building Technologist/Team Member, C/O TAEC Consult P. Ltd., Nepal National Building Code Development Project Shankhamul, Kathmandu, NEPAL Email:taec@mos.com.np

Reviewer(s)

 Richard D. Sharpe Director of Earthquake Engineering , Beca International Consultants Ltd. Wellington, NEW ZEALAND Email:rsharpe@beca.co.nz FAX: 64-4-473-7911

Save page as

