World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Rammed earth house with pitched roof (Nyumba yo dinda OR Nyumba ya mdindo)

Report #	45
Report Date	05-06-2002
Country	MALAWI
Housing Type	Adobe / Earthen House
Housing Sub-Type	Adobe / Earthen House : Rammed earth/Pise construction
Author(s)	Mauro Sassu, Ignasio Ngoma
Reviewer(s)	Manuel A. Lopez M.

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This type of construction is used for residences only. The building technique consists of in-situ ramming of moist soil in a carefully aligned/placed mold. The mold dimensions are between (250 - 300 mm) wide X (400 - 450 mm) long X (200 - 300 mm) height. The plan of the house

is rectangular. The roof is either grass thatch or iron sheets supported on timber poles. This type is found in all three regions of Malawi. The strength of the wall is low and depends on the compacting effort applied. The expected seismic performance is poor. There are no vertical or horizontal reinforcements.

1. General Information

Buildings of this construction type can be found in The house type is found in all three regions of Malawi. This house type represents about 35% of total housing stock in Malawi. This type of housing construction is commonly found in rural areas. This construction type has been in practice for less than 100 years.

Currently, this type of construction is being built. .

Figure 1: Typical "nyumba yo dinda" house

Figure 2:Typical Building

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. When separated from adjacent buildings, the typical distance from a neighboring building is 2-3 meters.

2.2 Building Configuration

Rectangular shape. Generally three openings are provided, i.e. one door and two windows. The door is in front and so are the windows. The door is about 1.7 m high X 0.6 m wide. The windows are 0.3 m wide X 0.6 m high. The window and door areas are about 5% of the overall wall surface area.

2.3 Functional Planning

The main function of this building typology is single-family house. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. None.

2.4 Modification to Building

Re-roofing and wall smearing i.e. smearing with specially prepared mud mortar.

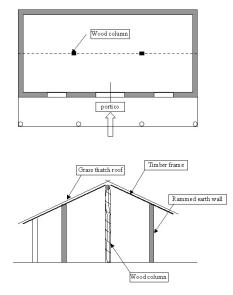


Figure 3: Plan and transverse section of a typical building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Structure	#	Subtypes	Most appropriate type
	Stone Masonry Walls	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
		2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
	Adobe/ Earthen waiis	5	Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	w alls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
			Designed for seismic effects,	

	Moment resisting frame	19	with URM infill walls	
	liante	20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural concrete	Structural wall	22	Moment frame with in-situ shear walls	
		23	Moment frame with precast shear walls	
		24	Moment frame	
		25	Prestressed moment frame with shear walls	
	Precast concrete	26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
		29	With brick masonry partitions	
	Moment-resisting frame	30	With cast in-situ concrete walls	
		31	With lightweight partitions	
Steel	Braced frame	32	Concentric connections in all panels	
			Eccentric connections in a few panels	
	Structural wall	34	Bolted plate	
		35	Welded plate	
		36	Thatch	
		37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
		38	Masonry with horizontal beams/planks at intermediate levels	
Timber	Load-bearing timber frame	39	Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
		41	Stud-wall frame with plywood/gypsum board sheathing	
		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
Other	Seismic protection systems	44	Building protected with seismic dampers	
	Hybrid systems	45	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is others (described below). The roof is directly supported by the rammed earth wall which in turn rests directly on the ground.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is earthen walls. The wall is made by use of a mould which is placed where the wall will be located. Moist soil is placed in it and rammed using a tamping wooden piece in at least three layers. The process is repeated until the proper height is reached. The wall height is about 2.5 m with a thickness of between 0.20 m and

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 6 and 6 meters, and widths between 4 and 4 meters. The building is 1 storey high. The typical span of the roofing/flooring system is 4 meters. Typical Plan Dimensions: This is only indicative size because the size varies depending on the requirements of the owner. Typical Story Height: The length to width ratio is never less than 2. The typical storey height in such buildings is 2.1 meters. The typical structural wall density is more than 20 %. About 30%.

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
Timber	Wood planks or beams that support clay tiles		
Tunber	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below		

3.5 Floor and Roof System

Rammed earth with plaster/smear finishing. Floor is considered to be a flexible diaphragm.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	

0.30.

	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep loundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

Figure 4: Critical structural details

Figure 5: An illustration of key seismic features and/or deficiencies

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 1 housing unit(s). 1 units in each building. The number of inhabitants in a building during the day or business hours is less than 5. The number of inhabitants during the evening and night is less than 5. or 5-10.

-1

4.2 Patterns of Occupancy

E.

Generally one family occupies one housing unit.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

50% very poor and 50% poor. It is difficult to estimate the ratio of house price/annual income.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 1 bathroom(s) without toilet(s), 1 toilet(s) only and 1 bathroom(s) induding toilet(s).

Bathrooms and toilets are externally provided by a small shelter and a pit latrine. .

4.4 Ownership

The type of ownership or occupancy is outright ownership and individual ownership.

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ow nership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

Structural/	_		Most appropriate type			
Architectural Feature	Statement	Yes	No	N/A		
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.					
Building Configuration	The building is regular with regards to both the plan and the elevation.					
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.					
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.					
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.					
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.					
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is Less than 25 (concrete walls); Less than 30 (reinforced masonry walls);					
Foundation-wall connection	Less than 13 (unreinforced masonry walls); Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are doweled into the foundation.					
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps					
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.					
Quality of building material	Quality of building materials is considered to be s adequate per the requirements of national codes and standards (an estimate).					
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).					
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)					
Additional Comments		-				

5.1 Structural and Architectural Features

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall	Very poor lateral resistance; lintels provided are very weak; soil structure is brittle and prone to crumbling.	Built in situ.	
Frame (columns, beams)			
	No ties between roof and wall; weak joining of roof members; and floor is made up of rammed earth.	Wide bearing area at roof support.	

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *A*: *HIGH VULNERABILITY (i.e., very poor seismic performance)*, the lower bound (i.e., the worst possible) is A: HIGH VULNERABILITY (i.e., very poor seismic performance), and the upper bound (i.e., the best possible) is *A*: *HIGH VULNERABILITY (i.e., very poor seismic performance)*.

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	C	D	E	F
Class						

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity	
1957	Champira	5	MMI IIIV	
1966	Mw anza	5.3		
1967	Thambani in Mwanza	5.4		
1989	Salima	6	MMI VIII	

In 1973 another earthquake hit Livingstonia with magnitude of 5.1 on the Richter scale. The 1989 Salima earthquake was the worst in Malawi. 9 persons lost their lives whilst over 50,000 people were left homeless. Geologists forecast more intense earthquakes in Malawi. Rammed earth buildings were the worst affected.

6. Construction

I

6.1 Building Materials

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls	Rammed earth.	N/A		
Foundation				
Frames (beams & columns)	Timber			
Roof and floor(s)				

6.2 Builder

Yes.

6.3 Construction Process, Problems and Phasing

The house is built by a special master builder who learns the job as an assistant. He learns the job as he helps with bringing the soil (as assistant). A pit is dug and water is poured in it overnight. The soil is only expected to be moist i.e. the soil must not retain the water. The tools used are a hoe, two buckets, a mould, a tamping wooden piece, and a scaper for removing soil from the mould. FOUNDATION: There is no foundation. The lines of the walls are marked on leveled ground, pegs are placed where necessary. WALL CONSTRUCTION: The wall is made of rammed earth. A site of the soil pit is identified with trials to make sure that the soil does not have a lot of day content. Soil is dug and water poured in it to soak it over night. The moisture of the soil is critical so that remixing is done from time to time. The soil is then moved to the mould which is already placed in the proper place on the construction site. The soil is rammed in layers in the mould. It is necessary to ensure that a proper compacting effort has been achieved before removing the mould. ROOFING: The roof is made up of grass thatch placed on timber poles made into a grid/mesh to retain the grass. The poles are supported on a timber pole beam which is itself supported on two king posts which are supported by timber pole beams spanning across the longitudinal walls. The two beams are placed at 1/4 points from the ends. Once the grass thatch has been placed, small sized timber poles are split and placed above grass and tied to poles below grass so that grass does not move out of place. This is done at 1/3 points all round.

OPENINGS: The openings are few. Timber lintels are provided although not strong. The construction of this type

of housing takes place in a single phase. Typically, the building is originally not designed for its final constructed size.

6.4 Design and Construction Expertise

Generally good level of expertise based on this practice. No role so far.

6.5 Building Codes and Standards

This construction type is not addressed by the codes/standards of the country.

6.6 Building Permits and Development Control Rules

This type of construction is a non-engineered, and not authorized as per development control rules. Building permits are not required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s).

6.8 Construction Economics

Difficult to estimate because of communal nature of working. The builder, assistant, and others for drawing water from borehole, etc.

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Weak lintels	Reinforcing with wood lintels		
No ties between roof and wall	Inserting of ties		
Weak joining of roof members	Wood transverse connections		

Strengthening of Existing Construction :

Weak lintels Reinforcing with wood lintels. No ties between roof and wall Inserting of ties. Weak joining of roof members Wood transverse connections.

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

No.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? Repair following earthquake damage.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? Yes.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

The owner - no architects or engineers are involved.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? N/A.

Reference(s)

1. Seismicity and Source Mechanisms of the Malawi Rift and Adjuscent Areas, from 1900 to 1990 Chapola,L.S. for the course of seismiology 1990-1991 at International Institute of Seismiology and Earthquake Engineering, Building Research Institute Tsukuba, Japan 1991

- The Malawi Earthquake of March,10, 1989: A Report of Macroseismic Survey Gupta,H.K. Tectonophy 209, No. 1-4, 165-166 1992
- An Estimation of Earthquake Hazards and Risks in Malawi Chapola,L.S. Geological Surveys Department, P.O. Box 27, Zomba 1993
- Seismicity and Tectonics of Malawi Chapola,L.S. National Atlas of Malawi 1994
- State of Stress in East and Southern Africa and Seismic Hazard Analysis of Malawi Chapola,L.S.
 M.Sc. Thesis, Institute of Solid Earth Physics, University of Bergen, Norway 1997
- 6. National Housing Policy Malawi Government 1999
- Low Cost Building Materials in Malawi Kamwanja,G.A.
 Ph.D. Thesis, University of Malawi 1988

Author(s)

- Mauro Sassu
 Associate Professor, Dept. of Structural Engineering, University of Pisa Via Diotisalvi 2, Pisa 56126, ITALY Email:m.sassu@ing.unipi.it FAX: 39 050 554597
- Ignasio Ngoma Senior Lecturer, University of Malawi The Polytechnic P/B 303, Blantyre 3, MALAWI Email:ingoma@poly.sdnp.org.mw FAX: 265-670578

Reviewer(s)

 Manuel A. Lopez M. Engineer
 Escuela de Ingenier, Universidad de El Salvador
 San Salvador, EL SALVADOR
 Email:manuel.lopez@unipv.it FAX: 503-225-2506

Save page as

