World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World



an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

# HOUSING REPORT Reinforced concrete frame building

| Report #         | 30                                                                           |
|------------------|------------------------------------------------------------------------------|
| Report Date      | 06-05-2002                                                                   |
| Country          | ITALY                                                                        |
| Housing Type     | RC Moment Frame Building                                                     |
| Housing Sub-Type | RC Moment Frame Building : Designed for gravity loads only, with URM infills |
| Author(s)        | Maurizio Leggeri, Giuseppe Lacava, Eugenio Viola                             |
| Reviewer(s)      | Craig D. Comartin                                                            |

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

#### Summary

This building type is commonly used for multifamily housing in urban areas of Italy and is particularly common in the region of Potenza (Basilicata). Prior to 1981, this region was not included in the official seismic zonation map of Italy, in spite of the historical evidence. However, after the major earthquake of November 1980, the entire Potenza province was recognized as a seismically prone area. Consequently, seismic considerations were not taken into account for in the building design projects predating the 1980 earthquake. The main loadbearing structure is reinforced concrete frame with masonry infill walls. Many buildings of this type were strengthened using the financial assistance provided by the government. The upgrade typically consists of installing new shear walls and L-shaped columns, and strengthening the foundation.

## 1. General Information

Buildings of this construction type can be found in many cities throughout Italy. This type of housing construction is commonly found in urban areas.

This type of construction is also present in suburban areas.

This construction type has been in practice for less than 50 years.

Currently, this type of construction is not being built. This building type was common in the dties when the area was not officially in the seismic zone (pre-1980).





Figure 1D: Typical Building

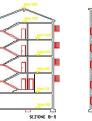



Figure 2A: Key Load-Bearing Elements (Building Shown on Figure 1A)



Figure 2B: Key Load-bearing Elements (Building Shown on Figure 1D)

# 2. Architectural Aspects

#### 2.1 Siting

These buildings are typically found in sloped and hilly terrain. They do not share common walls with adjacent When separated from adjacent buildings, the typical distance from a neighboring building is 8-10 buildings. meters.

#### 2.2 Building Configuration

Typical shape of the building plan is rectangular. The size of door opening is 0.80 m width and 2.00 m height. In the

new RC shear walls installed as a part of the upgrade, there is only 1 door opening per apartment. The ratio of door area/shear wall area is approximately 9%.

#### 2.3 Functional Planning

The main function of this building typology is multi-family housing. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. There is no additional exit stair besides the main stairs.

#### 2.4 Modification to Building

The structural upgrade did not modify the building function (the same housing features were preserved after the upgrade).

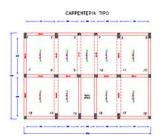



Figure 3A: Plan of a Typical Building

# 3. Structural Details

#### 3.1 Structural System

| Material | Type of Load-Bearing Structure | #  | Subtypes                                                                                         | Most appropriate type |
|----------|--------------------------------|----|--------------------------------------------------------------------------------------------------|-----------------------|
|          | Stone Masonry<br>Walls         | 1  | Rubble stone (field stone) in mud/lime<br>mortar or without mortar (usually with<br>timber roof) |                       |
|          | w ans                          | 2  | Dressed stone masonry (in<br>lime/cement mortar)                                                 |                       |
|          |                                | 3  | Mud walls                                                                                        |                       |
|          | Adobe/ Earthen Walls           | 4  | Mud walls with horizontal wood elements                                                          |                       |
|          | Adobe/ Earthen waits           | 5  | Adobe block walls                                                                                |                       |
|          |                                | 6  | Rammed earth/Pise construction                                                                   |                       |
|          |                                | 7  | Brick masonry in mud/lime<br>mortar                                                              |                       |
|          | Unreinforced masonry           | 8  | Brick masonry in mud/lime<br>mortar with vertical posts                                          |                       |
| Masonry  | w alls                         | 9  | Brick masonry in lime/cement<br>mortar                                                           |                       |
|          |                                | 10 | Concrete block masonry in<br>cement mortar                                                       |                       |
|          |                                | 11 | Clay brick/tile masonry, with<br>wooden posts and beams                                          |                       |
|          | Confined masonry               | 12 | Clay brick masonry, with<br>concrete posts/tie columns<br>and beams                              |                       |
|          |                                | 13 | Concrete blocks, tie columns<br>and beams                                                        |                       |
|          |                                | 14 | Stone masonry in cement<br>mortar                                                                |                       |
|          | Reinforced masonry             | 15 | Clay brick masonry in cement<br>mortar                                                           |                       |
|          |                                |    | Concrete block masonry in                                                                        |                       |

|                     |                              | 16 | cement mortar                                                     |  |
|---------------------|------------------------------|----|-------------------------------------------------------------------|--|
|                     |                              |    | Flat slab structure                                               |  |
|                     |                              | 18 | Designed for gravity loads<br>only, with URM infill walls         |  |
|                     | Moment resisting<br>frame    | 19 | Designed for seismic effects,<br>with URM infill walls            |  |
|                     |                              | 20 | Designed for seismic effects,<br>with structural infill walls     |  |
|                     |                              | 21 | Dual system – Frame with<br>shear wall                            |  |
| Structural concrete | Structural wall              | 22 | Moment frame with in-situ<br>shear walls                          |  |
|                     |                              | 23 | Moment frame with precast<br>shear walls                          |  |
|                     |                              | 24 | Moment frame                                                      |  |
|                     |                              | 25 | Prestressed moment frame<br>with shear walls                      |  |
|                     | Precast concrete             | 26 | Large panel precast walls                                         |  |
|                     |                              | 27 | Shear wall structure with<br>walls cast-in-situ                   |  |
|                     |                              | 28 | Shear wall structure with precast wall panel structure            |  |
|                     | Moment-resisting             | 29 | With brick masonry partitions                                     |  |
|                     |                              | 30 | With cast in-situ concrete<br>walls                               |  |
|                     |                              | 31 | With lightweight partitions                                       |  |
| Steel               | Braced frame                 | 32 | Concentric connections in all panels                              |  |
|                     |                              | 33 | Eccentric connections in a few panels                             |  |
|                     | Structural wall              | 34 | Bolted plate                                                      |  |
|                     |                              | 35 | Welded plate                                                      |  |
|                     |                              |    | Thatch                                                            |  |
|                     |                              | 37 | Walls with bamboo/reed mesh<br>and post (Wattle and Daub)         |  |
|                     | Load-bearing timber<br>frame | 38 | Masonry with horizontal<br>beams/planks at intermediate<br>levels |  |
| Timber              |                              | 39 | Post and beam frame (no special connections)                      |  |
|                     |                              | 40 | Wood frame (with special connections)                             |  |
|                     |                              | 41 | Stud-wall frame with<br>plywood/gypsum board<br>sheathing         |  |
|                     |                              | 42 | Wooden panel walls                                                |  |
|                     |                              | 43 | Building protected with base-isolation systems                    |  |
| Other               | Seismic protection systems   | 44 | Building protected with seismic dampers                           |  |
|                     | Hybrid systems               | 45 | other (described below)                                           |  |

#### 3.2 Gravity Load-Resisting System

The vertical load-resisting system is reinforced concrete moment resisting frame. Reinforced concrete frame.

## 3.3 Lateral Load-Resisting System

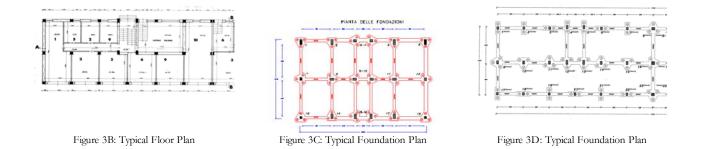
The lateral load-resisting system is reinforced concrete structural walls (with frame). Originally the buildings were designed for gravity loads only. Unreinforced masonry infill walls exist as partitions (non-load-bearing elements). The strengthening was carried out after the November 1980 earthquake, in order to incorporate elements of lateral load-resisting system. The upgrade consists of installing new RC shear walls, L-shaped concrete columns and strengthening the foundation (using internal micropiles and external macropiles).

#### 3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 35 and 35 meters, and widths between 12 and 12 meters. The building has 4 to 10 storey(s). The typical span of the roofing/flooring system is 4.5 meters. Typical Plan Dimensions: The length varies from 20 to 50 m (35 m is stated as an average value). Typical Story Height: In the older buildings of this type (with stone masonry infill walls) the typical story height is 3.50 - 4.00 m. Typical Span: Span between the columns is on the order of 4.5 m. The typical storey height in such buildings is 3 meters. The typical storey height is up to 5 %. Approximately 0.05 (i.e. 5%).

| Material            | Description of floor/roof system                                                                            | Most appropriate floor | Most appropriate roof |  |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|--|
|                     | Vaulted                                                                                                     |                        |                       |  |
| Masonry             | Composite system of concrete joists and masonry panels                                                      |                        |                       |  |
|                     | Solid slabs (cast-in-place)                                                                                 |                        |                       |  |
|                     | Waffle slabs (cast-in-place)                                                                                |                        |                       |  |
|                     | Flat slabs (cast-in-place)                                                                                  |                        |                       |  |
|                     | Precast joist system                                                                                        |                        |                       |  |
| Structural concrete | Hollow core slab (precast)                                                                                  |                        |                       |  |
|                     | Solid slabs (precast)                                                                                       |                        |                       |  |
|                     | Beams and planks (precast) with concrete topping (cast-in-situ)                                             |                        |                       |  |
|                     | Slabs (post-tensioned)                                                                                      |                        |                       |  |
| Steel               | Composite steel deck with concrete slab<br>(cast-in-situ)                                                   |                        |                       |  |
|                     | Rammed earth with ballast and concrete or<br>plaster finishing                                              |                        |                       |  |
|                     | Wood planks or beams with ballast and concrete or plaster finishing                                         |                        |                       |  |
|                     | Thatched roof supported on wood purlins                                                                     |                        |                       |  |
|                     | Wood shingle roof                                                                                           |                        |                       |  |
| Timber              | Wood planks or beams that support clay tiles                                                                |                        |                       |  |
|                     | Wood planks or beams supporting natural stones slates                                                       |                        |                       |  |
|                     | Wood planks or beams that support slate,<br>metal, asbestos-cement or plastic corrugated<br>sheets or tiles |                        |                       |  |
|                     | Wood plank, plywood or manufactured wood<br>panels on joists supported by beams or walls                    |                        |                       |  |
| Other               | Described below                                                                                             |                        |                       |  |

#### 3.5 Floor and Roof System


The floor/roof is considered to act as a rigid diaphragm.

#### 3.6 Foundation

| Туре | Description                                      | Most appropriate type |
|------|--------------------------------------------------|-----------------------|
|      | Wall or column embedded in soil, without footing |                       |
|      |                                                  |                       |

|                    | Rubble stone, fieldstone<br>isolated footing |  |
|--------------------|----------------------------------------------|--|
| Shallow foundation | Rubble stone, fieldstone strip<br>footing    |  |
|                    | Reinforced-concrete isolated footing         |  |
|                    | Reinforced-concrete strip<br>footing         |  |
|                    | Mat foundation                               |  |
|                    | No foundation                                |  |
|                    | Reinforced-concrete bearing piles            |  |
|                    | Reinforced-concrete skin<br>friction piles   |  |
| Deep foundation    | Steel bearing piles                          |  |
| Deep iounciation   | Steel skin friction piles                    |  |
|                    | Wood piles                                   |  |
|                    | Cast-in-place concrete piers                 |  |
|                    | Caissons                                     |  |
| Other              | Described below                              |  |

It consists of reinforced concrete end-bearing piles. For all the buildings built before the 1980 earthquake, without any seismic features, the reinforcement of piles was limited to the first 2.50-3.00 m, for the anchorage to the plinths. Fortunately, foundation collapse was not reported due to very good soil conditions (over consolidated day) with resetting of bending moment.



# 4. Socio-Economic Aspects

#### 4.1 Number of Housing Units and Inhabitants

Each building typically has 10-20 housing unit(s). 20 units in each building. Typically 10 to 30 units in each building. The number of inhabitants in a building during the day or business hours is more than 20. The number of inhabitants during the evening and night is more than 20.

#### 4.2 Patterns of Occupancy

One family per apartment (housing unit).

#### 4.3 Economic Level of Inhabitants

| Income class                         | Most appropriate type |
|--------------------------------------|-----------------------|
| a) very low-income class (very poor) |                       |
| b) low-income class (poor)           |                       |

| c) middle-income class      |  |
|-----------------------------|--|
| d) high-income class (rich) |  |

Very Poor: lowest 10%, Poor: lowest 30%, Middle Class: lowest 30% to top 20%, Rich: top 20%.

| Ratio of housing unit price to annual income | Most appropriate type |
|----------------------------------------------|-----------------------|
| 5:1 or worse                                 |                       |
| 4:1                                          |                       |
| 3:1                                          |                       |
| 1:1 or better                                |                       |

| What is a typical source of financing for buildings of this type? | Most appropriate type |  |
|-------------------------------------------------------------------|-----------------------|--|
| Owner financed                                                    |                       |  |
| Personal savings                                                  |                       |  |
| Informal network: friends and relatives                           |                       |  |
| Small lending institutions / micro-<br>finance institutions       |                       |  |
| Commercial banks/mortgages                                        |                       |  |
| Employers                                                         |                       |  |
| Investment pools                                                  |                       |  |
| Government-ow ned housing                                         |                       |  |
| Combination (explain below)                                       |                       |  |
| other (explain below)                                             |                       |  |

At present time, the Government does not support any new construction of this type. In each housing unit, there are 1 bathroom(s) without toilet(s), 1 toilet(s) only and 1 bathroom(s) induding toilet(s).

Typically 1 bathroom and 1 latrine per housing unit or a bathroom and a latrine together. .

#### 4.4 Ownership

The type of ownership or occupancy is outright ownership and individual ownership.

| Type of ownership or occupancy?         | Most appropriate type |
|-----------------------------------------|-----------------------|
| Renting                                 |                       |
| outright ownership                      |                       |
| Ownership with debt (mortgage or other) |                       |
| Individual ownership                    |                       |
| Ownership by a group or pool of persons |                       |
| Long-term lease                         |                       |
| other (explain below)                   |                       |

# 5. Seismic Vulnerability

## 5.1 Structural and Architectural Features

| Structural/                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Most appropriate type |     |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-----|--|
| Architectural<br>Feature                    | Statement                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes | No                    | N/A |  |
| Lateral load path                           | The structure contains a complete load path for seismic<br>force effects from any horizontal direction that serves<br>to transfer inertial forces from the building to the<br>foundation.                                                                                                                                                                                                                                        |     |                       |     |  |
| Building<br>Configuration                   | The building is regular with regards to both the plan<br>and the elevation.                                                                                                                                                                                                                                                                                                                                                      |     |                       |     |  |
| Roof construction                           | The roof diaphragm is considered to be rigid and it is<br>expected that the roof structure will maintain its<br>integrity, i.e. shape and form, during an earthquake of<br>intensity expected in this area.                                                                                                                                                                                                                      |     |                       |     |  |
| Floor construction                          | The floor diaphragm(s) are considered to be rigid and it<br>is expected that the floor structure(s) will maintain its<br>integrity during an earthquake of intensity expected in<br>this area.                                                                                                                                                                                                                                   |     |                       |     |  |
| Foundation<br>perfo <del>r</del> mance      | There is no evidence of excessive foundation movement<br>(e.g. settlement) that would affect the integrity or<br>performance of the structure in an earthquake.                                                                                                                                                                                                                                                                  |     |                       |     |  |
| Wall and frame<br>structures-<br>redundancy | The number of lines of walls or frames in each principal direction is greater than or equal to 2.                                                                                                                                                                                                                                                                                                                                |     |                       |     |  |
| Wall proportions                            | Height-to-thickness ratio of the shear walls at each floor level is:<br>Less than 25 (concrete walls);<br>Less than 30 (reinforced masonry walls);<br>Less than 13 (unreinforced masonry walls);                                                                                                                                                                                                                                 |     |                       |     |  |
| Foundation-wall connection                  | Vertical load-bearing elements (columns, walls)<br>are attached to the foundations; concrete<br>columns and walls are dow eled into the<br>foundation.                                                                                                                                                                                                                                                                           |     |                       |     |  |
| Wall-roof<br>connections                    | Exterior walls are anchored for out-of-plane seismic<br>effects at each diaphragm level with metal anchors or<br>straps                                                                                                                                                                                                                                                                                                          |     |                       |     |  |
| Wall openings                               | The total width of door and window openings in a wall<br>is:<br>For brick masonry construction in cement mortar : less<br>than ½ of the distance between the adjacent cross<br>walls;<br>For adobe masonry, stone masonry and brick masonry<br>in mud mortar: less than 1/3 of the distance between<br>the adjacent cross<br>walls;<br>For precast concrete wall structures: less than 3/4 of<br>the length of a perimeter wall. |     |                       |     |  |
| Quality of building materials               | Quality of building materials is considered to be<br>adequate per the requirements of national codes and<br>standards (an estimate).                                                                                                                                                                                                                                                                                             |     |                       |     |  |
| Quality of workmanship                      | Quality of workmanship (based on visual inspection of<br>few typical buildings) is considered to be good (per<br>local construction standards).                                                                                                                                                                                                                                                                                  |     |                       |     |  |
| Maintenance                                 | Buildings of this type are generally well maintained and there<br>are no visible signs of deterioration of building<br>elements (concrete, steel, timber)                                                                                                                                                                                                                                                                        |     |                       |     |  |
| Additional Comments                         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                       |     |  |

#### 5.2 Seismic Features

| Structural Element        | Defismic Deficiency                         | Earthquake Resilient<br>Features | Earthquake Damage Patterns                                |
|---------------------------|---------------------------------------------|----------------------------------|-----------------------------------------------------------|
| Wall                      | Unreinforced hollow clay tile infill walls. |                                  | Diagonal ("X"-cracking) and failure see Figure 4A and 4B. |
| Frame (columns,<br>beams) | Designed for gravity loads only.            |                                  |                                                           |
| Roof and floors           | Designed for gravity loads only.            |                                  |                                                           |
|                           |                                             |                                  |                                                           |

#### 5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is C: MEDIUM VULNERA BILITY (i.e., moderate seismic performance), the lower bound (i.e., the worst possible) is B: MEDIUM-HIGH VULNERABILITY (i.e., poor seismic performance), and the upper bound (i.e., the best possible) is D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance).

| Vulnerability | high      | medium-high | medium   | medium-low | low       | very low  |
|---------------|-----------|-------------|----------|------------|-----------|-----------|
|               | very poor | poor        | moderate | good       | very good | excellent |
| Vulnerability | А         | В           | C        | D          | E         | F         |
| Class         |           |             |          |            |           |           |

#### 5.4 History of Past Earthquakes

| Date | Epicenter, region           | Magnitude | Max. Intensity |
|------|-----------------------------|-----------|----------------|
| 1980 | Irpinia-Basilicata          | 6.8       | 8.7 (MMI)      |
| 1990 | Potenza                     | 5.4       | 6.6 (MMI)      |
| 1991 | Potenza                     | 5         | 6.0 (MMI)      |
| 1998 | Pollino-Lau <del>r</del> ia | 5.5       | 6.75 (MMI)     |

The list includes the significant earthquakes in the Basilicata region after this construction practice has started.



Figure 4A: Typical Earthquake Damage - Cracking of Hollow Clay Tile Partitions



Figure 4B: Typical Earthquake Damage-Cracking of Masonry Partitions

## 6. Construction

#### 6.1 Building Materials

| Structural element       | Building material          | Characteristic strength Mix proportions/dimensions Comme | ents |
|--------------------------|----------------------------|----------------------------------------------------------|------|
| Walls                    | Reinforced Concrete, Steel | 300 kg/cm <sup>2</sup> , 4400 kg/cm <sup>2</sup>         |      |
| Foundation               | Reinforced Concrete, Steel | 300 kg/cm <sup>2</sup> , 4400 kg/cm <sup>2</sup>         |      |
| Frames (beams & columns) | Reinforced Concrete, Steel | 300 kg/cm <sup>2</sup> , 4400 kg/cm <sup>2</sup>         |      |
| Roof and floor(s)        | Reinforced Concrete, Steel | 300 kg/cm <sup>2</sup> , 4400 kg/cm <sup>2</sup>         |      |

#### 6.2 Builder

The builder typically lives in a building of this construction type.

#### 6.3 Construction Process, Problems and Phasing

This construction type is built by contractors. The construction of this type of housing takes place in a single phase. Typically, the building is originally designed for its final constructed size.

#### 6.4 Design and Construction Expertise

Design for building of this type: by a graduate technician (a college graduate). Structural design: by a Civil Engineer. The structural design of this construction was completely done by a civil engineer. The architects usually design buildings with better aesthetic features (and functionality).

#### 6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. Italian Code. The year the first code/standard addressing this type of construction issued was 1971. National ByLaw #1086, November 5, 1971 National ByLaw #64, February 2, 1974 Ministerial Order January 16, 1996. The most recent code/standard addressing this construction type issued was 1996. Title of the code or standard: Italian Code Year the first

code/standard addressing this type of construction issued: 1971 National building code, material codes and seismic codes/standards: National ByLaw #1086, November 5, 1971 National ByLaw #64, February 2, 1974 Ministerial Order January 16, 1996 When was the most recent code/standard addressing this construction type issued? 1996.

Building permit is issued if the design documents have been approved by the Building Committee of Town Municipality (Planning and Building Departments) and by the Regional Committee (named "Genio Civile") for Structural Project.

#### 6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

#### 6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s).

#### 6.8 Construction Economics

500 US/m<sup>2</sup>. The construction of a typical load-bearing structure of this type (5-story high) would take from 126 to 180 days for a team of 8-10 persons.

## 7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable.

# 8. Strengthening

#### 8.1 Description of Seismic Strengthening Provisions

| 0 1 .                                   | CT · ·      | · ·            |
|-----------------------------------------|-------------|----------------|
| Strengthening                           | of Existing | Construction : |
| 0 00 000 000000000000000000000000000000 | 0           |                |

| Seismic Deficiency                        | Description of Seismic Strengthening provisions used |  |  |
|-------------------------------------------|------------------------------------------------------|--|--|
| Pile Foundations                          | Strengthening                                        |  |  |
| RC Columns                                | Strengthening                                        |  |  |
| Deficient Lateral Load-Resisting Capacity | Installation of new RC shear walls                   |  |  |

The initial phase of the seismic upgrade design induded the evaluation of the existing building in order to identify seismic deficiencies. Dynamic analysis was performed using the Super ETABS software, and the natural periods of the structure for six different modes. After the strengthening design was performed, the new periods have been calculated, showing that the strengthened building is characterized with a significantly higher stiffness as compared to the original building. A chart showing the variation of natural vibration periods for the same five-story building before and after the retrofit is illustrated in Figure 5H (corresponding to the building shown in Figures 1A, 2A and 3A). A similar chart

is presented on Figure 5I, corresponding to a four-story building shown in Figures 1E, 2B and 3.

#### 8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

Yes. The strengthening has been performed in practice. This type of strengthening assures the protection of the building from seismic effects and improved dynamic response.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? Repair and retrofit after the earthquake.

#### 8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? No.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

Contractor performed the construction and an engineer was involved.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? The performance of retrofitted building was excellent in the earthquakes of 1990/1991.

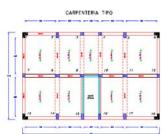



Figure 5A: Seismic Strengthening Techniques : Floor Plan of a Strengthened Building

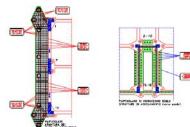
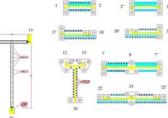





Figure 5D: Seismic Strengthening- Foundation Details



Figure 5B: Seismic Strengthening - Floor Plan of a Strengthened Building



Seismic Strengthening-Foundation and Wall Details Figure 5F: Seismic Strengthening- Details of New



MODE NUMBER Figure 5H: Dynamic Characteristics (Natural Period) of a Five-Story Building Before and After the Retrofit (corresponding to the building show n on Figures 1A, 2A, and 3A)

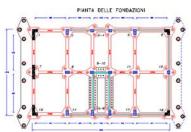
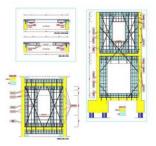




Figure 5C: Seismic Strengthening - Foundation Plan



RC Shear Wall

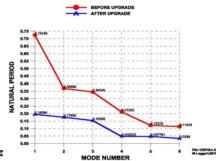



Figure 5I: Dynamic Characteristics (Natural Period) of a Four-Story Building Before and After the Retrofit (correspoding to the building shown on Figures 1E, 2B and 3B)

# 1.8 P

Figure 5G: Seismic Strengthening- Details of New Shear Wall

# Reference(s)

- 1. Censimento ISTAT Popolazione ed Abitazioni Italian Seismic Code (in Italian) 1990
- 2. I Terremoti Della Basilicata Leggeri,M. Edizioni Ermes, Potenza, Italy (in Italian)

# Author(s)

1. Maurizio Leggeri Engineer, ARCHSTUDIO-GEOCART Via F. Baracca 175, Potenza 85100, ITALY Email:maurileg@tin.it FAX: 39-0971-470021

- Giuseppe Lacava Engineer, GEOCART Via Ligure 8, Potenza 85100, ITALY Email:geocart@geocart.net FAX: 39-0971-56671
- Eugenio Viola
  Engineer, GEOCART
  Via Ligure 8, Potenza 85100, ITALY
  Email:geocart@geocart.net FAX: (39-971) 56671

# Reviewer(s)

 Craig D. Comartin President
 C.D. Comartin Associates Stockton CA 95207-1705, USA Email:ccomartin@comartin.net FAX: (209) 472-7294

Save page as

