World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Gravity-Designed Reinforced Concrete Frame Buildings with Unreinforced Masonry Infill Walls

Report #	13
Report Date	05-06-2002
Country	CYPRUS
Housing Type	RC Moment Frame Building
Housing Sub-Type	RC Moment Frame Building : Designed for gravity loads only, with URM infills
Author(s)	V. Levtchitch
Reviewer(s)	Craig D. Comartin

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This type of concrete apartment building was widely constructed after the 1974 Turkish invasion in order to accommodate approximately 200,000 refugees. Typically, these buildings are low-rise (up to 5 stories) apartment blocks. As a rule, architectural considerations prevail

over structural requirements. Very often columns are located irregularly and do not form a definite grid. Soft ground stories are used for car-parks (garages) and shops. Staircases and lift (elevator) shafts are not located symmetrically. The vulnerability of these buildings should be very high when the inherent seismic deficiencies of this structural type (design mistakes, construction faults, unavoidable aging, lack of maintenance, accumulation of minor damage from previous earthquakes, deterioration of the concrete and corrosion of the reinforcing bars) are taken into account. But against all odds the majority of these buildings have stood well in numerous small earthquakes and exhibited rather good performance under the peak ground accelerations of up to 0.15g (the maximum expected in Cyprus). Damage and destruction have been very selective depending on the local soil conditions and periods of natural vibration.

1. General Information

Buildings of this construction type can be found in the entire country. This type of housing construction is commonly found in both rural and urban areas.

This type of housing accounts for more than 30% of the total dwelling stock. In urban areas these buildings constitute approximately 45% of houses.

This construction type has been in practice for less than 50 years.

Currently, this type of construction is not being built. Since 1994 the seismic code for design and construction was introduced.

Figure 1: Typical Building

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat, sloped and hilly terrain. They do not share common walls with adjacent buildings. The typical separation distance between buildings is 6 meters 3 meters from the property border, i.e. 6 m between buildings. At present there are dearly defined width of seismic separation joints for buildings located within one building site but in the past majority of joints were of evidently inadequate width. When separated from adjacent

buildings, the typical distance from a neighboring building is 6 meters.

2.2 Building Configuration

Basically rectangular, but rather often an irregular location of columns and asymmetric position of stairs-and-lift-shafts, re-entrant corners and set-backs transform them into structurally irregular systems. Sometimes a building plot shape influences the configuration of buildings. In external infill-walls openings may cover up to 40% of the wall surface and in internal walls - up to 20%. Openings in infill-walls (if they are not located immediately near the columns) do not constitute a major vulnerability factor. Framing of continuous lintels into columns is to be considered.

2.3 Functional Planning

The main function of this building typology is multi-family housing. Mixed use (both commercial and residential use). In the vast majority of cases there is a mixed functional use. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. In buildings of more than one floor, commonly there is an additional exit stair for the emergency escape.

2.4 Modification to Building

Internal infill walls and partitions can be removed or added to meet new functional requirements. As a rule, columns remain unaffected. Balconies can be supplemented by endosing walls made of various materials. In one-two storey private buildings there can be the plan extensions of different types without paying any attention to a seismic structural integrity of a modified structure. Practically all private one-three storey buildings are provided with the starter reinforcement bars projecting from the columns for the future construction of additional stories. This strong desire for the additions is not always backed by the initially provided foundations and the structural capacities of a first-phase constructed frame. The unprotected starter bars are usually extensively corroded and practically cannot serve the purpose. Moreover, their corrosion inevitably propagates inside and there are cracks due to corrosion products

expansion. Occasionally, the additional stairs have been constructed.

Figure 2: Plan of a Typical Building

3. Structural Details

3.1 Structural System

	Stone Masonry	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	Walls		Dressed stone masonry (in lime/cement mortar)	
			Mud walls	
		4	Mud walls with horizontal wood elements	
	Adobe/ Earthen Walls	5	Adobe block walls	
		6	Rammed earth/Pise construction	
		5	Brick masonry in mud/lime	
		Ľ	mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	walls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns	
		Ш	and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
	Moment resisting frame	17	Flat slab structure	
		18	Designed for gravity loads	
		H	Designed for seismic effects,	
		19	with URM infill walls Designed for seismic effects	
		20	with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural concrete	Structural wall	22	Moment frame with in-situ shear walls	
			Moment frame with precast shear walls	
			Moment frame	
		25	Prestressed moment frame with shear walls	
	Precast concrete	26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
Steel		29	With brick masonry partitions	
	Moment-resisting frame	30	With cast in-situ concrete walls	
		31	With lightweight partitions	
		32	Concentric connections in all panels	
	Braced frame		Eccentric connections in a few panels	
	Structural wall		Bolted plate	
			Welded plate	
		36	Thatch	

		37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
	Load-bearing timber frame	38	Masonry with horizontal beams/planks at intermediate levels	
Timber		39	Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
		41	Stud-wall frame with plywood/gypsum board sheathing	
Other		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
	Seismic protection systems		Building protected with seismic dampers	
	Hybrid systems	45	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is reinforced concrete moment resisting frame. Common cast-in-situ R.C. frame, basically of usual dimensions and typical proportions. In spite of frequent irregularities of the beam-arrangement, the commonly used 150 mm deep slab over usual spans contributes to the lateral diaphragm action of the floor-and-roof system. Re-entrant corners and set-backs were provided without taking into account torsional effects, distribution of lateral seismic forces and overloading of outward external columns. "Strong column-weak beam" principle was not followed. Just the opposite is the case. Rigid and slender columns are used within the same storey and "short column effect" was not considered. Interaction between flexible R.C. frames and rigid-low-strain-capacity-brittle infill walls was not addressed. Joints between them are not specified. Generally, deformation compatibility was not analyzed. Usually, floor systems are rigid enough in their own plane to act as the horizontal stiff diaphragm and to distribute seismic forces between columns in accordance with their rigidities. But rather often some beams are omitted or arranged in one direction only. The continuity is disrupted, slab supports are altered, membrane action is affected, load path is complicated and frame lateral performance is influenced adversely. Besides, sometimes slabs have the hollow core day bricks as the filler in tensile (bottom) zone. Since seismic forces alternate in both vertical and horizontal directions and generate torsional movements this is not a good choice to resist them. Spans of a single continuous beam usually differ considerably, but their cross-sections remain the same and, hence, their relative rigidities and forces transferred to them are quite different. End anchorage of beams and slabs in the outer bays is not adequate. Top reinforcement in both beams and slabs is not sufficient in terms of quantity and length of extension into spans. Usually there is overapaaty of bottom reinforcement and underapaaty of the top reinforcement. In spite of the fact that these buildings were neither designed nor detailed for earthquakes, they have certain reserves of lateral resistance. Tied-up columns can take lateral drifts. Floor-and-roof diaphragms this. Provided that anchorage and continuity are maintained, concrete structures reinforced with ductile steel have an inherent ability to adapt to cyclic loadings due to spatial redistribution of stresses, change of rigidities and natural periods of vibration, strain hardening of steel. In

many cases their available capacities are somewhat higher than those determined by simplified methods of analysis.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is reinforced concrete moment resisting frame. Reinforced concrete frame acts as the stabilizing-lateral load resisting system. The rigid, brittle infill walls have approximately two times smaller interstory-drift capacities than those of the columns. Their joint response can be utilized only within low levels of lateral displacements. After shearing of infill walls, the whole of the lateral load is suddenly transferred to columns and this makes them very vulnerable.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 12 and 12 meters, and widths between 18 and 18 meters. The building has 3 to 5 storey(s). The typical span of the roofing/flooring system is 3.5 - 4.5 meters. The typical storey height in such buildings is 3 meters. The typical structural wall density is up to 10 %. Approximately

3.5 Floor and Roof System

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
Timber	Wood planks or beams that support clay tiles		
	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below		

In most cases floors and roofs can be treated as the rigid diaphragms.

3.6 Foundation

Туре	Description	Most appropriate type	
	Wall or column embedded in soil, without footing		
	Rubble stone, fieldstone isolated footing		
	Rubble stone, fieldstone strip footing		
Shallow foundation	Reinforced-concrete isolated footing		
	Reinforced-concrete strip footing		
	Mat foundation		
	No foundation		
	Reinforced-concrete bearing piles		
	Reinforced-concrete skin friction piles		
	Steel bearing piles		

Deep foundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

In the coastal areas the mat foundations were sometimes used.

Figure 3: Key Load-bearing Elements

Reas column consertion. Zones of potential plants thinging (critical mass) is both columns and beams were sate provided with a register Configure, Within the pure times columns were ast provided with a lateral reinforcement. Sometimes bent auchers of beams" longitudinal reinforcement were not provided Figure 4: Critical Structural Detail

Figure 5A: Soft ground story

Figure 5B: Plan and elevation irregularities

Figure 5C: Non symmetrical location of stairwell

Figure 5D: Inadequate seismic joint

Figure 5F: Short columns: sharp difference in capacities of adjacent columns

Figure 5H: Large balconies

Figure 51: Heavy concentrated loads are transferred to a thin balcony slab

Figure 5J: Weak columns, incomplete beam-grid and a heavy-rigid parapet wall of the additional constructed top story

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 10-20 housing unit(s). 8-14 units in each building. The number of inhabitants in a building during the day or business hours is 5-10. The number of inhabitants during the evening and night is more than 20.

4.2 Patterns of Occupancy

One family per housing unit.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

Rich-15%, middle dass-75%, poor-10%.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-ow ned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 1 bathroom(s) without toilet(s), no toilet(s) only and 1 bathroom(s) induding toilet(s).

7

10

Usually 1 bathroom per unit, but in more recent buildings can be 2. .

4.4 Ownership

The type of ownership or occupancy is renting and individual ownership.

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/	Statement		Most appropriate type		
Architectural Feature		True	False	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.				
Building Configuration	The building is regular with regards to both the plan and the elevation.				
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.				
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.				
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.				
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);				
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are doweled into the foundation.				
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps				
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance betw een the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance betw een the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.				
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).				
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).				
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)				
Additional Comments					

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Pattems
Wall	Rigid, brittle infill-walls are in contact with the much more flexible columns. Infill-walls suffer heavy damage themselves and trigger the damage and destruction of columns. A low quality site- prepared cement mortar has been used. The characteristic bond can be as low as 0.015 MPa, i.e. approximately 10 times low er than that required for a good quality masonry. Vertical joints have not been filled with mortar. Neither an effect of infill panels on a frame nor that of a swaying R.C. frame on a brittle infill walls have been considered.	In spite of their brittleness masonry infill panels can absorb and dissipate a considerable part of earthquake energy. Their strength must be low er than that of a basic R.C. frame. After breaking down of infill panels the consecutive earthquake motions must be within the capacities of a R.C. frame alone. The undesirable interaction betw een columns and walls may be prevented by providing of separation joints. An infill panel can be upgraded to a structural type, which will respond jointly with R.C. frames, i.e. as boundary columns with a wall or a column with the side- walls.	Extensive diagonal cracking due to the principal tensile stresses is estimated to take place at interstory drifts between 1/400 and 1/200, while the common R.C. columns can accommodate interstory drifts of up to 1/100 or even more. Separation gaps at the corners and along beams are the common feature. Occasionally, the out-of- the -plane loss of stability has been observed. Sometimes, the lateral shear cracks have been developed.
Frame (columns, beams)	Columns are not specifically designed and detailed for seismic forces. "Strong column-weak beam" principle was not followed. Shear and confining reinforcement is not adequate. Panel zones of beam-column joints are not provided with lateral reinforcement and frequently are not compacted properly. Stiff and flexible columns are used within one floor. Soft ground floor. Columns with the large aspect ratio are used. Torsion of peripheral columns is not addressed. Anchorage of lateral reinforcement inside the core is not provided. Shear reinforcement of beams is not sufficient. Confining within the potential plastic-hinge zones is not adequate. Excessive bottom reinforcement and not adequate top reinforcement. Not sufficient length of top reinforcement. End anchorage in the outer bays is not sufficient.	Although columns were not designed for seismic forces, they were reinforced by the high-ductility steels and performed as a part of a spatial frame. Columns of some older buildings have longitudinal reinforcement of plane mild steel which has an inherently high survival power. A certain continuity and redundancy have been intuitively provided. When anchorage of beams reinforcement required for the gravitational loads was provided their performance under a low intensity earthquake loadings (up to 0.10 g) was satisfactory. Usually, a beam's capacities were predetermined by its connections	Both columns of buildings with "soft stories" and "short-rigid columns" incorporated into more flexible R.C. frames have suffered heavy damages. The shearing failure is the most common mode of destruction. Combined effects of shear, eccentrical compression and torsion resulted in shear cracking, spalling of concrete and buckling of longitudinal reinforcement at the top and bottom parts. In some cases the corrosion of reinforcement aggravated the damage. Beams usually suffered some visible, but not life- threatening damages. Flexural and shearing cracks could have a maximum opening of up to 0.6 mm. In some spandrel beams the torsional effects triggered a shear type cracking.
Roof and floors	In most cases the roof and floor systems can be classified as rigid in their own plane. But there are cases of beams spanning in one direction, chaotic arrangement of beams and lack of their continuity, beams within a slab depth.	Slabs of 15cm depth, when rigidly fixed into four supporting beams of adequate dimensions and spans, can effectively provide for the uniform distribution of lateral seismic forces.	Some minor cracking was observed in one- way spanning floor slabs, when supporting beams were provided in one direction only.
Other	In many cases the basements are not under the whole area of buildings. More-than-one-level foundations do not have an appropriate transition zones from one depth to another. Tie-beams are not always of an adequate capacity to hold pad footings together and to prevent their mutual displacements and rotations. These beams support infill-walls and are not located at the bottom of footings.		Generally, foundations performed satisfactorily, except some isolated cases where uneven settlements and certain base distortions were

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is C: MEDIUM VULNERABILITY (i.e., moderate seismic performance), the lower bound (i.e., the worst possible) is B: MEDIUM-HIGH VULNERABILITY (i.e., poor seismic performance), and the upper bound (i.e., the best possible) is D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance).

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability Class	А	В	С	D	Е	F

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1995	Paphos	5.7	MMI-VII
1996	Paphos - Limassol	6.5	MMI-VII-VIII
1999	Limassol	5.8	MMI-VII

Main bulk of destruction was in masonry buildings. Note: the vulnerability rating of medium assigned in the previous section reflects the level of seismic hazard officially adopted in Cyprus (i.e. peak ground acceleration of 0.15g). For the higher intensities, this assessment would not be true, and buildings would be expected to be rated in the B category of vulnerability.

Figure 6A: A Photograph Illustrating Typical Earthquake Damage. Shearing failure of a partition

Figure 6C: Horizontal shearing displacement

Figure 6D: Shearing failure of a short column

Figure 6E: Shearing of concrete and buckling of

Figure 6F: Torsional shearing and buckling of

longitudinal reinforcement due to inadequate lateral reinforcement

longitudinal reinforcement at the bottom of a corner column

Figure 6G: Shearing and buckling at the bottom of a column

Figure 6H: Buckling of reinforcement at the bottom of a cylindrical column

Figure 61: Eccentric beam-short column connection

Figure 6J: Support failure

6. Construction

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls				
Foundation	Concrete	15-20 N/mm ²		
Frames (beams & columns)	Concrete, Steel	15-25 N/mm², S220-S500		
Roof and floor(s)	Concrete , Steel	15-20 N/mm², S220-S400		

6.2 Builder

Typically these buildings are constructed by developers, but the builders can live in them.

6.3 Construction Process, Problems and Phasing

Usually developers and contractors have built up these type of buildings. The construction of this type of housing takes place in a single phase. Typically, the building is originally designed for its final constructed size. Modifications, alterations and additions are possible. Permissions are to be obtained.

6.4 Design and Construction Expertise

At present a design is to be prepared by the registered engineer and architect. Contracts are awarded on the tendering basis. Contractors are to be registered with the specified qualification and experience. In the past, however, this practice was not followed. Architects are responsible for the architectural planning and drawings. Civil Engineers are responsible for the structural design The compulsory site-control by engineers have been introduced only in 1999.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. Before adoption of the National Code of Practice in 1994 the codes of any developed country could be used, provided that a design will be checked and approved by the authority. As a result the following codes have been used: CP114, CP110, BS8110, ACI318, BAEL,

DIN, SNiP and some others. The year the first code/standard addressing this type of construction issued was

Beginning of the last century. Seismic design and construction of reinforces concrete structures. 1994. Practically it is a

version proposed by the CEB-FIP. But the described here type of buildings does not conform with it. Title of the code or standard: Before adoption of the National Code of Practice in 1994 the codes of any developed country could be used , provided that a design will be checked and approved by the authority. As a result the following codes have been used: CP114, CP110, BS8110, ACI318, BAEL, DIN, SNiP and some others. Year the first code/standard addressing this type of construction issued: Beginning of the last century. National building code, material codes and seismic codes/standards: Seismic design and construction of reinforces concrete structures. 1994. Practically it is a

version proposed by the CEB-FIP. But the described here type of buildings does not conform with it.

These buildings were constructed before the adoption and enforcement of current Codes. In the past a lax inspection and quality control resulted in a shoddy construction which can be rated as one of the main contributing factors to destructions. At present a site inspection by a structural engineer is compulsory.

6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s). Poor maintenance presents a huge problem.

6.8 Construction Economics

Approximately 450 US\$/m². 5-6 months for a 4-storey building by the 8-10 person-strong team.

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Seismic Deficiency	Description of Seismic Strengthening provisions used
Low shearing capacity and ductility of	 Steel angles-strips jacketing over the whole height of a column. See Fig. 7A Strength, stiffness and ductility are all affected. Concrete cover or ganite concrete is added on the top.
columns	
Null	2. Traditional R.C. jacketing. See Fig. 7B Existing concrete cover is to be removed, existing reinforcement is to be cleaned (if needed), new longitudinal reinforcement should be anchored into foundations and floors. Closely spaced lateral ties at the top and bottom are to be provided. Concrete cover should be reinstalled.
Null	3. Confining of concrete by the spiral wire tightly wrapped around a column and welded to vertical steel strips. See Fig. 7C
Excessive interstory drift	1. Diagonal bracing. See Fig. 7D.
Null	2. Infilling into opening , infilling into frame, infilling of a panel with an opening. See Fig. 7E.

Strengthening of Existing Construction :

A considerable improvement of confining by steel angles jacketing can be achieved by preliminary prestressing of a jacket. Before welding the steel strips are to be heated up to 300 deg C, ensuring that at a time of welding their temperature is not lower than 150 deg C. While cooling down the contraction forces create lateral tightening. The weak point of the steel-angle jacketing is the electric welds, which are brittle in themselves and commonly are not of an adequate length and capacity. Moreover, an anchorage of angles into floors and foundations is difficult. The joint response of newly added angle jackets and existing columns can be significantly improved by prestressing of longitudinal angles by means of lateral bolts tightening ,as it is shown in Fig.7. Before installing angles the lateral notches are made in them to allow their slight bending. While tightening lateral bolts the angles are straightened and

the vertical thrust forces are transferred to frame beams. Usually one of these techniques is used.

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

These methods have been used in several cases.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? Steel angles-strips jacketing,, R.C. jacketing, bracing and infillings were used as the repair-upgrading measures following slight damages after earthquakes. A confining of corner columns of circular cross-section by a spiral wire was done as a mitigation effort.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction?

Yes.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

Contractor. Structural engineer was involved.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? Satisfactory. There was no strong quake since then, but they stood well to several light tremors.

Figure 7A: Illustration of Seismic Strengthening Techniques

Figure 7B: Traditional R/C jacketing

Figure 7C: Confining of concrete by spiral wire

Figure 7E: Infillings. a) Into opening, b) Into frame, c) Steel bracing, d) Panel with opening

Reference(s)

- Summary of National experience, lessons learned from earthquakes and assessment of vulnerability in Cyprus G. Constantinou and K. Solomis Ministry of Agriculture, National Recourses and Environment. Geological department 1996
- 2. Construction and housing statistics Statistical Service of Cyprus 1999
- The October 9,1996 earthquake in Cyprus I. Kalogeras, G. Stavrakis, and K. Solomis Annali di Geofisica, Vol.42, No.1, February 1999 1999
- Seismicity of Cyprus during the last 100 years Seismological stations, Seismic zones, Microzones, Mitigation policy, and Seismic codes of practice Ministry of Agriculture, National Resources and Environment, 22 May 1997
- Earthquake in Paphos 23/2/1995
 C. Chrisostomou
 Architect and Civil Engineer, N2, May 1995 1995
- Earthquake of August 11,1999 in Limassol K. Solomis Geological Department 2000
- TEE, N1940
 K. Ioannidi, G. Stavraki, C. Fringa, A. Kuriaxi an Athens, 3 February 1997 1997
- 8. Seminars, Conferences, Personal communications and practical involvements

Author(s)

1. V. Levtchitch Professor, Frederick Institute of Technology P.O. Box 24729 p.c. 1303, Nicosia , CYPRUS Email:savvas@research.fit.ac.cy FAX: -437879

Reviewer(s)

 Craig D. Comartin President
 C.D. Comartin Associates Stockton CA 95207-1705, USA Email:ccomartin@comartin.net FAX: (209) 472-7294

Save page as

