World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World



an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

# HOUSING REPORT Precast reinforced concrete frame panel system of seria IIS-04

| Report #         | 66                                       |
|------------------|------------------------------------------|
| Report Date      | 05-06-2002                               |
| Country          | UZBEKISTAN                               |
| Housing Type     | Precast Concrete Building                |
| Housing Sub-Type | Precast Concrete Building : Moment frame |
| Author(s)        | Shamil Khakimov, Bakhtiar Nurtaev        |
| Reviewer(s)      | Svetlana N. Brzev                        |

#### Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

#### Summary

This housing type is used in the construction of residential and public buildings in many cities throughout Uzbekistan (including the capital city Tashkent) that are located in zones with intensities between 7-9. Residential buildings of this type are generally 9 to 12 stories high,

whereas public buildings of the same construction are 1 to 4 stories high. All seismic loadresisting (and also nonstructural) components, e.g., foundations, columns, girders, slabs, staircases, wall panels, etc., are manufactured in specialized plants. The materials are subsequently transported to the building site. The positive features of this construction type are (1) the ability to manufacture all building materials in an industrialized setting, and (2) the gain in efficiency inasmuch as the same building components may be used both for residential and public buildings. The key drawback is that the welded joints cause seismic vulnerability when the building is located in zones of extremely high seismic loads. These joints have shown extremely brittle behavior during earthquakes. Earthquake damage is mainly concentrated in the column joints, or in the column-to-girder joints. In some cases non-bearing walls and exterior wall panels have collapsed.

# 1. General Information

Buildings of this construction type can be found in Tashkent and other cities of Uzbekistan and Central Asia. In Tashkent, this housing type accounts for over 18% of the residential building stock and for over 25% of the public building stock. This type of housing construction is commonly found in urban areas. This construction type has been in practice for less than 50 years.

Currently, this type of construction is being built. This traditional construction practice has been followed for over 35 years. The frame panel seria IIS-04 was first used in 1973.



Figure 1: Typical Building

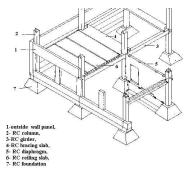



Figure 2: Key Load-Bearing Elements

# 2. Architectural Aspects

#### 2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. When separated from adjacent buildings, the typical distance from a neighboring building is 30 meters.

### 2.2 Building Configuration

Usually a rectangular plan. In this housing type, the main load-bearing elements are the columns, beams and joints (a frame structure). Therefore, seismic vulnerability does not depend on the number and size of the openings. The size of the windows and doors ranges from 2.25 m to 4.5 m.

### 2.3 Functional Planning

The main function of this building typology is mixed use (both commercial and residential use). In a typical building

of this type, there are no elevators and 1-2 fire-protected exit staircases. The means of escape depends upon the number of apartments on the floor. If a building has "point block" planning (2-4 apartments without a corridor at

each floor level), there is typically one staircase and one exit.

#### 2.4 Modification to Building

Minor modifications of interior partition walls may be done by the owners.

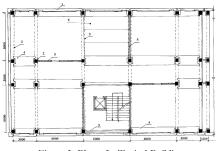



Figure 3: Plan of a Typical Building

# 3. Structural Details

# 3.1 Structural System

| Material | Type of Load-Bearing Structure | #  | Subtypes                                                                                         | Most appropriate type |
|----------|--------------------------------|----|--------------------------------------------------------------------------------------------------|-----------------------|
|          | Stone Masonry<br>Walls         | 1  | Rubble stone (field stone) in mud/lime<br>mortar or without mortar (usually with<br>timber roof) |                       |
|          | w alls                         | 2  | Dressed stone masonry (in<br>lime/cement mortar)                                                 |                       |
|          |                                | 3  | Mud walls                                                                                        |                       |
|          | Adobe/ Earthen Walls           | 4  | Mud walls with horizontal wood elements                                                          |                       |
|          | Adobe/ Earthen wais            | 5  | Adobe block walls                                                                                |                       |
|          |                                | 6  | Rammed earth/Pise construction                                                                   |                       |
|          |                                | 7  | Brick masonry in mud/lime<br>mortar                                                              |                       |
|          | Unreinforced masonry           | 8  | Brick masonry in mud/lime<br>mortar with vertical posts                                          |                       |
| Masonry  | w alls                         | 9  | Brick masonry in lime/cement<br>mortar                                                           |                       |
|          |                                | 10 | Concrete block masonry in<br>cement mortar                                                       |                       |
|          |                                | 11 | Clay brick/tile masonry, with<br>wooden posts and beams                                          |                       |
|          | Confined masonry               | 12 | Clay brick masonry, with<br>concrete posts/tie columns<br>and beams                              |                       |
|          |                                | 13 | Concrete blocks, tie columns<br>and beams                                                        |                       |
|          |                                | 14 | Stone masonry in cement<br>mortar                                                                |                       |
|          | Reinforced masonry             | 15 | mortar                                                                                           |                       |
|          |                                | 16 | Concrete block masonry in<br>cement mortar                                                       |                       |
|          |                                | 17 | Flat slab structure                                                                              |                       |
|          |                                | 18 | Designed for gravity loads<br>only, with URM infill walls                                        |                       |
|          | Moment resisting               | 19 | Designed for seismic effects,<br>with URM infill walls                                           |                       |
|          | frame                          | F  | Designed for seismic effects,                                                                    |                       |

|                     |                            | 20 | with structural infill walls                                      |  |
|---------------------|----------------------------|----|-------------------------------------------------------------------|--|
|                     |                            | 21 | Dual system – Frame with<br>shear wall                            |  |
| Structural concrete | Structural wall            | 22 | Moment frame with in-situ<br>shear walls                          |  |
|                     |                            | 23 | Moment frame with precast<br>shear walls                          |  |
|                     |                            | 24 | Moment frame                                                      |  |
|                     |                            | 25 | Prestressed moment frame<br>with shear walls                      |  |
|                     | Precast concrete           | 26 | Large panel precast walls                                         |  |
|                     |                            | 27 | Shear wall structure with<br>walls cast-in-situ                   |  |
|                     |                            | 28 | Shear wall structure with precast wall panel structure            |  |
|                     |                            | 29 | With brick masonry partitions                                     |  |
|                     | Moment-resisting<br>frame  | 30 | With cast in-situ concrete<br>walls                               |  |
|                     |                            | 31 | With lightweight partitions                                       |  |
| Steel               | Braced frame               | 32 | Concentric connections in all panels                              |  |
|                     |                            | 33 | Eccentric connections in a few panels                             |  |
|                     | Structural wall            | 34 | Bolted plate                                                      |  |
|                     |                            | 35 | Welded plate                                                      |  |
|                     |                            | 36 | Thatch                                                            |  |
|                     |                            | 37 | Walls with bamboo/reed mesh<br>and post (Wattle and Daub)         |  |
|                     |                            | 38 | Masonry with horizontal<br>beams/planks at intermediate<br>levels |  |
| Timber              |                            | 39 | Post and beam frame (no special connections)                      |  |
|                     |                            | 40 | Wood frame (with special connections)                             |  |
|                     |                            | 41 | Stud-wall frame with<br>plywood/gypsum board<br>sheathing         |  |
|                     |                            | 42 | Wooden panel walls                                                |  |
|                     |                            | 43 | Building protected with base-isolation systems                    |  |
| Other               | Seismic protection systems | 44 | Building protected with seismic dampers                           |  |
|                     | Hybrid systems             | 45 | other (described below)                                           |  |

### 3.2 Gravity Load-Resisting System

The vertical load-resisting system is reinforced concrete moment resisting frame. The gravity load-bearing structure consists of reinforced concrete frame, induding precast columns and beams and precast floor panels.

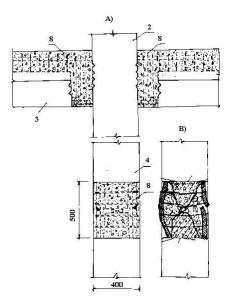
### 3.3 Lateral Load-Resisting System

The lateral load-resisting system is reinforced concrete moment resisting frame. The lateral load-resisting system is reinforced concrete frame, which consists of precast columns and beams and cast in-situ or precast concrete shear walls. Precast frame elements are joined together in the space frame structure. Shear walls may be made of precast panels or cast in-situ elevator cores in the taller buildings of this type (e.g., 12-story buildings). In medium-rise buildings of this type (e.g., 4-5 stories), the entire lateral load-resisting system consists of a RC frame only (i.e., shear walls are not

present). Precast floor panels are joined in a rigid diaphragm for the distribution of lateral forces.

#### 3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 24 and 24 meters, and widths between 15 and 15 meters. The building has 9 to 12 storey(s). The typical span of the roofing/flooring system is 6 meters. Typical Plan Dimensions: Typical plan dimensions: 18x18m, 12x36m, 15x24m Typical Span: The typical span may be either 6 or 3 meters. The typical storey height in such buildings is 3 meters. The typical structural wall density is up to 5 %.


#### 3.5 Floor and Roof System

| Material            | Description of floor/roof system                                                                            | Most appropriate floor | Most appropriate roof |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|
|                     | Vaulted                                                                                                     |                        |                       |
| Masonry             | Composite system of concrete joists and masonry panels                                                      |                        |                       |
|                     | Solid slabs (cast-in-place)                                                                                 |                        |                       |
|                     | Waffle slabs (cast-in-place)                                                                                |                        |                       |
|                     | Flat slabs (cast-in-place)                                                                                  |                        |                       |
|                     | Precast joist system                                                                                        |                        |                       |
| Structural concrete | Hollow core slab (precast)                                                                                  |                        |                       |
|                     | Solid slabs (precast)                                                                                       |                        |                       |
|                     | Beams and planks (precast) with concrete<br>topping (cast-in-situ)                                          |                        |                       |
|                     | Slabs (post-tensioned)                                                                                      |                        |                       |
| Steel               | Composite steel deck with concrete slab<br>(cast-in-situ)                                                   |                        |                       |
|                     | Rammed earth with ballast and concrete or plaster finishing                                                 |                        |                       |
|                     | Wood planks or beams with ballast and concrete or plaster finishing                                         |                        |                       |
|                     | Thatched roof supported on wood purlins                                                                     |                        |                       |
|                     | Wood shingle roof                                                                                           |                        |                       |
| Timber              | Wood planks or beams that support clay tiles                                                                |                        |                       |
| liniser             | Wood planks or beams supporting natural stones slates                                                       |                        |                       |
|                     | Wood planks or beams that support slate,<br>metal, asbestos-cement or plastic corrugated<br>sheets or tiles |                        |                       |
|                     | Wood plank, plywood or manufactured wood<br>panels on joists supported by beams or walls                    |                        |                       |
| Other               | Described below                                                                                             |                        |                       |

### 3.6 Foundation

| Туре               | Description                                      | Most appropriate type |
|--------------------|--------------------------------------------------|-----------------------|
|                    | Wall or column embedded in soil, without footing |                       |
|                    | Rubble stone, fieldstone isolated footing        |                       |
|                    | Rubble stone, fieldstone strip<br>footing        |                       |
| Shallow foundation | Reinforced-concrete isolated footing             |                       |

|                 | Reinforced-concrete strip<br>footing       |  |
|-----------------|--------------------------------------------|--|
|                 | Mat foundation                             |  |
|                 | No foundation                              |  |
|                 | Reinforced-concrete bearing piles          |  |
|                 | Reinforced-concrete skin<br>friction piles |  |
| Deep foundation | Steel bearing piles                        |  |
| Deep roundation | Steel skin friction piles                  |  |
|                 | Wood piles                                 |  |
|                 | Cast-in-place concrete piers               |  |
|                 | Caissons                                   |  |
| Other           | Described below                            |  |



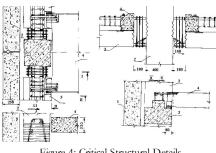



Figure 4: Critical Structural Details

Figure 5: An Illustration of Key Seismic Features and/or Deficiencies

# 4. Socio-Economic Aspects

#### 4.1 Number of Housing Units and Inhabitants

Each building typically has 51-100 housing unit(s). Usually there are more than 60 units in a building. The number of inhabitants in a building during the day or business hours is more than 20. The number of inhabitants during the evening and night is more than 20.

#### 4.2 Patterns of Occupancy

It depends on the size of the multi-story building. Typically, over 60 families live in a 12-story building.

### 4.3 Economic Level of Inhabitants

| Income class                         | Most appropriate type |
|--------------------------------------|-----------------------|
| a) very low-income class (very poor) |                       |
| b) low-income class (poor)           |                       |
| c) middle-income class               |                       |

| d) high-income class (rich) |
|-----------------------------|
|-----------------------------|

Economic Level: For Middle Class the Housing Price Unit is 5000 and the Annual Income is 720.

| Ratio of housing unit price to annual income | Most appropriate type |
|----------------------------------------------|-----------------------|
| 5:1 or worse                                 |                       |
| 4:1                                          |                       |
| 3:1                                          |                       |
| 1:1 or better                                |                       |

| What is a typical source of financing for buildings of this type? | Most appropriate typ |  |
|-------------------------------------------------------------------|----------------------|--|
| Owner financed                                                    |                      |  |
| Personal savings                                                  |                      |  |
| Informal network: friends and relatives                           |                      |  |
| Small lending institutions / micro-<br>finance institutions       |                      |  |
| Commercial banks/mortgages                                        |                      |  |
| Employers                                                         |                      |  |
| Investment pools                                                  |                      |  |
| Government-ow ned housing                                         |                      |  |
| Combination (explain below)                                       |                      |  |
| other (explain below)                                             |                      |  |

In each housing unit, there are 1 bathroom(s) without toilet(s), no toilet(s) only and 1 bathroom(s) induding toilet(s).

#### 4.4 Ownership

The type of ownership or occupancy is renting and outright ownership.

| Type of ownership or occupancy?         | Most appropriate type |  |  |
|-----------------------------------------|-----------------------|--|--|
| Renting                                 |                       |  |  |
| outright ownership                      |                       |  |  |
| Ownership with debt (mortgage or other) |                       |  |  |
| Individual ow nership                   |                       |  |  |
| Ownership by a group or pool of persons |                       |  |  |
| Long-term lease                         |                       |  |  |
| other (explain below)                   |                       |  |  |

Almost 90% of the buildings are privately owned and 10% are rented from the local government.

# 5. Seismic Vulnerability

#### 5.1 Structural and Architectural Features

| Structural/                                    |                                                                                                                                                                                                                                                                                                                                     | Most appropriate type |    |     |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|-----|--|
| Architectural<br>Feature                       | Statement                                                                                                                                                                                                                                                                                                                           | Yes                   | No | N/A |  |
| Lateral load<br>path                           | The structure contains a complete load path for seismic<br>force effects from any horizontal direction that serves<br>to transfer inertial forces from the building to the<br>foundation.                                                                                                                                           |                       |    |     |  |
| Building<br>Configuration                      | The building is regular with regards to both the plan<br>and the elevation.                                                                                                                                                                                                                                                         |                       |    |     |  |
|                                                | The roof diaphragm is considered to be rigid and it is<br>expected that the roof structure will maintain its<br>integrity, i.e. shape and form, during an earthquake of<br>intensity expected in this area.                                                                                                                         |                       |    |     |  |
| Floor<br>construction                          | The floor diaphragm(s) are considered to be rigid and it<br>is expected that the floor structure(s) will maintain its<br>integrity during an earthquake of intensity expected in<br>this area.                                                                                                                                      |                       |    |     |  |
| Foundation<br>performance                      | There is no evidence of excessive foundation movement<br>(e.g. settlement) that would affect the integrity or<br>performance of the structure in an earthquake.                                                                                                                                                                     |                       |    |     |  |
| Wall and<br>frame<br>structures-<br>redundancy | The number of lines of walls or frames in each principal direction is greater than or equal to 2.                                                                                                                                                                                                                                   |                       |    |     |  |
|                                                | Height-to-thickness ratio of the shear walls at each floor level is:<br>Less than 25 (concrete walls);<br>Less than 30 (reinforced masonry walls);<br>Less than 13 (unreinforced masonry walls);                                                                                                                                    |                       |    |     |  |
| Foundation-<br>wall<br>connection              | Vertical load-bearing elements (columns, walls)<br>are attached to the foundations; concrete<br>columns and walls are doweled into the<br>foundation.                                                                                                                                                                               |                       |    |     |  |
| Wall-roof<br>connections                       | Exterior walls are anchored for out-of-plane seismic<br>effects at each diaphragm level with metal anchors or<br>straps                                                                                                                                                                                                             |                       |    |     |  |
| Wall openings                                  | The total width of door and window openings in a wall<br>is:<br>For brick masonry construction in cement mortar : less<br>than ½ of the distance between the adjacent cross<br>walls;<br>For adobe masonry, stone masonry and brick masonry<br>in mud mortar: less than 1/3 of the distance between<br>the adjacent cross<br>walls; |                       |    |     |  |
| Quality of                                     | For precast concrete wall structures: less than 3/4 of<br>the length of a perimeter wall.<br>Quality of building materials is considered to be<br>adequate per the requirements of national codes and<br>standards (an estimate).                                                                                                   |                       |    |     |  |
| Quality of<br>w orkmanship                     | Quality of workmanship (based on visual inspection of<br>few typical buildings) is considered to be good (per<br>local construction standards).                                                                                                                                                                                     |                       |    |     |  |
|                                                | Buildings of this type are generally well maintained and there<br>are no visible signs of deterioration of building<br>elements (concrete, steel, timber)                                                                                                                                                                           |                       |    |     |  |
| Additional<br>Comments                         | Precast floor panels are constructed with special grooves and steel dowels projected on all four si<br>This type of floor structure subjected to lateral loads was tested in the lab. The roof diaphragm is<br>the quality of construction is adequate.                                                                             |                       |    |     |  |

### 5.2 Seismic Features

| Structural<br>Element             | Seismic Deficiency                                                                                                                                                                                                                                                                            | Earthquake<br>Resilient<br>Features | Earthquake Damage Patterns                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Partition<br>w alls<br>(cladding) | Exterior and interior partition walls are non-load-bearing (i.e., they carry their own weight only).                                                                                                                                                                                          |                                     | Due to poor quality of wall-column<br>and wall-beam joints, the walls<br>may experience serious damage in<br>an earthquake. |
| Frame<br>(columns,<br>beams)      | The most vulnerable parts of a frame are beam-column joints; these welded joints are<br>located in the area of extremely high loads. As a result of the welding, steel<br>reinforcement bars may have loose ductility. Also, the concrete poured in these joints is<br>often poorly vibrated. |                                     | Damage to beam-column joints                                                                                                |
| Roof and<br>floors                | The joints between the precast slabs (grouted in-situ) are sometimes not properly filled with grout and may lose their strength in an earthquake.                                                                                                                                             |                                     | Damage of horizontal panel joints<br>and the subsequent loss of rigid<br>diaphragm behavior                                 |
| (vertical                         | The assembled reinforced concrete diaphragms are inadequately welded to the columns.<br>Vertical bars discontinued during the site installation. Due to poor quality of<br>construction, the diaphragm strength may be reduced by 50%.                                                        |                                     | Failure of precast diaphragm-to-<br>frame connections.                                                                      |

### 5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *C: MEDIUM VULNERABILITY (i.e., moderate seismic performance)*, the lower bound (i.e., the worst possible) is B: MEDIUM-HIGH VULNERABILITY (i.e., poor seismic performance), and the upper bound (i.e., the best possible) is *D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance)*.

| Vulnerability | high      | medium-high  | medium   | medium-low   | low       | very low  |
|---------------|-----------|--------------|----------|--------------|-----------|-----------|
|               | very poor | poor         | moderate | good         | very good | excellent |
| Vulnerability | А         | В            | C        | D            | E         | F         |
| Class         |           | $\checkmark$ |          | $\checkmark$ |           |           |

### 5.4 History of Past Earthquakes

| Date | Epicenter, region | Magnitude | Max. Intensity |
|------|-------------------|-----------|----------------|
| 1984 | Gazli             | 7.2       | IX (MSK        |
| 1988 | Spitak (Armenia)  | 7.5       | IX-X (MSK)     |

Buildings of this type were damaged during the 1988 Spitak earthquake, as illustrated in Figures 6A and 6B.



Figure 6A: Building Damage in Leninakan (1988

Spitak, Armenia Earthquake)



Figure 6B: Building Damage in Leninakan (1988 Spitak, Armenia Earthquake)



Figure 6C: Building Damage (1988 Spitak, Armenia Earthquake)



Figure 6D: Building Damage (1988 Spitak, Armenia Earthquake) Source: Klyachko 1999



Figure 6E: Building Damage (1994 Shikotansk, Russia Earthquake) Source: Klyachko 1999



Figure 6F: Building Damage (1994 Shikotansk, Russia Earthquake) Source: Klyachko 1999

# 6. Construction

# 6.1 Building Materials

| Structural<br>element | Building material                                             | Characteristic strength                                                     | Mix proportions/dimensions                                                                                                                                                                                                            | Comments |
|-----------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Walls                 | (vertical diaphragms):                                        | Wall panels (vertical<br>diaphragms): 30 MPa (cube<br>compressive strength) | Partition Walls: These walls are not lateral load-resisting elements<br>Mix - 1: 1.5: 2.4: 0.45 Dimensions 6000 X 1500 X 250 (mm) Wall<br>panels (vertical diaphragms): Mix- 1: 1.75: 3.21: 0.51 Dimensions<br>5600 X 140 X 3280 (mm) |          |
| Foundation            | Reinforced concrete                                           | 10-15 MPa (cube<br>compressive strength)                                    | Mix- 1: 1,4: 2: 0,49 Dimensions: 1400 X 1400 X 900 (mm)                                                                                                                                                                               |          |
| (beams &              | Column: Reinforced<br>concrete Girder:<br>Reinforced concrete | Compressive strength)                                                       | Column: 1: 2: 3: 0.5 Cross sectional dimensions: 400 X 400 (mm) X<br>height (3300 -13500 mm) Girder: Mix- 1: 1.4: 2.8: 0.49 Cross-<br>sectional dimensions: 420 X 480 (mm)                                                            |          |
| Roof and<br>floor(s)  | IKeinforced concrete                                          | 30 MPa (cube compressive strength)                                          | Mix- 1: 1.75: 3.24: 0.44 Dimensions : 6000 X 220 X 1600 (mm)                                                                                                                                                                          |          |

#### 6.2 Builder

A builder may live in this construction type, and his children may attend the schools housed in buildings of this type.

Typically, frame panel buildings are constructed by order of the municipality.

#### 6.3 Construction Process, Problems and Phasing

Based on the order of the government, a design agency develops a series of industrialized construction elements. Based on the information provided by the design agency, a concrete plant prepares a set of metal forms for the columns, girders, diaphragms, slabs, wall panels, staircases, etc., corresponding to the requirements of a series. Based on the order of a municipality or other dients, design firms develop designs of individual buildings or typical (standardized) building designs. A concrete plant manufactures and delivers all required building elements to the construction site. A construction company erects the building at the construction site. The main pieces of equipment

used for the construction are a tower crane, welding equipment, and concrete mixers. The construction of this type of

housing takes place in a single phase. Typically, the building is originally designed for its final constructed size.

### 6.4 Design and Construction Expertise

All designs are reviewed by the State Expert Bureau of the State Committee on Architecture and Construction (SCAC); the revisions are incorporated in the final design (if required). Once the review is completed, the designs are forwarded to the concrete plants and the construction company. The concrete strength is evaluated in the laboratory in the concrete plant, and the reinforcement schedule is checked and compared with the design documents. Periodically (once in six months), the laboratory data are examined by a representative of the State Architecture Construction Control Department (SACC) of SCAC. SCAC also monitors the construction quality at the site. In addition to this, a representative of the design agency or firm also performs a site inspection. The builders should take into account the designer's comments made during the site inspection. Once the construction is complete, a special state expert

committee needs to approve the building and to issue the building permit. Use and selection of the typical, standard production of series IIS-04 depend upon load conditions. Engineers and architects cannot change any construction details (joints, connections) in the existing series, which is approved by the government. Only the agency that has developed the series is able to change the details.

### 6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. The construction is carried out based upon the catalogs of frame panel seria IIS-04 (developed in 1973), and upon the National Building Code of Uzbekistan: "Construction in Earthquake-prone Areas" (KMK.2.01.03-96). National Building Code, Material Codes and Seismic Codes/Standards; National Building Code of Uzbekistan: Construction in Earthquake-prone Areas (KMK.2.01.03-96). The most recent code/standard addressing this construction type issued was 1996. Title of the code or standard: The construction is carried out based upon the catalogs of frame panel seria IIS-04 (developed in 1973), and upon the National Building Code of Uzbekistan: "Construction in Earthquake-prone Areas" (KMK.2.01.03-96). National Building code of Uzbekistan: "Construction in Earthquake-prone Areas" (KMK.2.01.03-96). National Building code, material codes and seismic codes/standards: National Building Code, Material Codes and Seismic Codes/Standards; National Building Code of Uzbekistan: onstruction in Earthquakeprone Areas (KMK.2.01.03-96). When was the most recent code/standard addressing this construction type issued? 1996.

Design of buildings using the seria IIS-04 is carried out in accordance with the National Building Code of Uzbekistan: Construction in Earthquake-prone Areas.

### 6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

### 6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s) and Tenant(s).

### 6.8 Construction Economics

33000 sum/m<sup>2</sup> (110 US\$/m<sup>2</sup>). A 12-story residential building with 48 housing units and with plan dimensions

# 7. Insurance

Earthquake insurance for this construction type is typically available. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is available. The insurance covers approximately 30% of the construction cost.

# 8. Strengthening

Frame (column)

#### 8.1 Description of Seismic Strengthening Provisions

| <br>Strengthening of Existing Construction : |                                                 |  |  |
|----------------------------------------------|-------------------------------------------------|--|--|
| Seismic Deficiency                           | Description of Seismic Strengthening provisions |  |  |
| Beam-column joints                           | Reinforcing of joints with steel plates         |  |  |

Installation of additional (external) steel ties (straps)

Seismic strengthening of a building in Tashkent is illustrated in Figures 7A and 7B.

#### 8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

used

Yes. Seismic strengthening was performed on some buildings in Tashkent.

#### 8.3 Construction and Performance of Seismic Strengthening



Figure 7A: Illustration of Seismic Strengthening Techniques

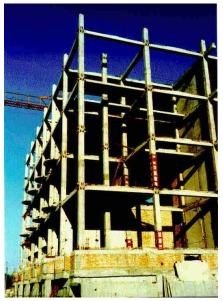



Figure 7B: Illustration of Seismic Strengthening Techniques

# Reference(s)

- 1. Construction in Earthquake-prone Areas National Building Code of Uzbekistan, KMK 2.01.03-96 1996
- 2. Concrete and Reinforced Concrete Design Codes and Standards
- 3. Construction Catalog: seria IIS-04.16
- 4. Earthquakes and Us Klyachko,M.A Intergraf, Saint Peterburg, Russia (in Russian) 1999

# Author(s)

- Shamil Khakimov Head of the Department, Institute of Typical and Experimental Design Nyazova 17, Tashkent 700095, UZBEKISTAN
- Bakhtiar Nurtaev Deputy Director, Institute of Geology and Geophysics Khodjibaeva 49, Tashkent 700041, UZBEKISTAN Email:Nurtaev@ingeo.uz FAX: 99871 1626381

# Reviewer(s)

 Svetlana N. Brzev Instructor Civil and Structural Engineering Technology, British Columbia Institute of Technology Burnaby BC V5G 3H2, CANADA Email:sbrzev@bcit.ca FAX: (604) 432-8973

Save page as

