World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Multistory base-isolated brick masonry building with reinforced concrete floors and roof

Report #	9
Report Date	05-06-2002
Country	CHINA
Housing Type	Seismic Protection Systems
Housing Sub-Type	Seismic Protection Systems: Buildings Protected with Seismic Dampers
Author(s)	Fu L. Zhou, Zhong G. Xu, Wen G. Liu
Reviewer(s)	Ravi Sinha

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

This is typically a 5- to 8-story building with commercial enterprises on the ground floor and residences above. Brick masonry buildings have been used in China for thousands of years. This construction practice possesses the advantage of easy manufacture and low cost;

however, the brittleness of the brick masonry material combined with weak seismic resistance induces severe damage or collapse of buildings and causes thousands of deaths during an earthquake. Since 1990, base-isolated brick masonry buildings with reinforced concrete floors/roof have been used more widely in China. The base-isolated building consists of an isolation system (laminated rubber isolation devices) superstructure and substructure. The base-isolation system is located on top of the walls or columns in the basement or at the ground floor level of a building without a basement. The superstructure consists of conventional multi-story brick masonry walls and reinforced concrete floors/roof. The substructure is part of the building beneath the isolation system and consists of the basement and the foundation structure. The base-isolated masonry structure results in an increase in seismic safety by a factor of 4-12 times as compared to that of a non-isolation masonry structure. The high seismic resistance of the base isolation structure house has been proven by shake table tests and in many actual earthquake events in China and other countries. The wide usage of base isolation technology indicates that the era of strong earthquake-proof buildings is coming in China.

1. General Information

Buildings of this construction type can be found in the urban areas of western, eastern, northern, southern and central China. This type of housing construction is commonly found in urban areas. This construction type has been in practice for less than 25 years.

Currently, this type of construction is being built. .

Figure 1: Typical Building

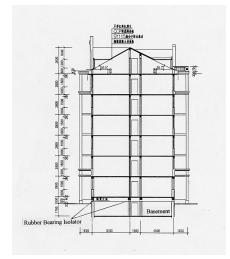


Figure 2: Building Elevation showing the Location of Base Isolation Devices

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. When separated from adjacent buildings, the typical distance from a neighboring building is 6 meters.

2.2 Building Configuration

Buildings of this type have rectangular plan shapes. For a typical floor, one window with 1,800 mm width and 1,500 mm height in each 3,100 mm length of outside wall. One or two doors each with 900 mm width and 2,100 mm

height in each 3,300 mm length of inside wall. The overall windows and doors areas are about 26% of the overall wall surface area.

2.3 Functional Planning

The main function of this building typology is mixed use (both commercial and residential use). In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases.

2.4 Modification to Building

No modifications could be observed.

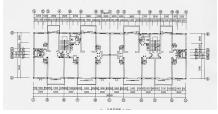


Figure 3: Typical Floor Plan

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Structure	#	Subtypes	Most appropriate type
	Stone Masonry Walls		Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	Wans	2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
		5	Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
		8	Brick masonry in mud/lime mortar with vertical posts	
Masonry		9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
	Confined masonry	11	Clay brick/tile masonry, with wooden posts and beams	
		12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
		15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	

		18	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural concrete	Structural wall	22	Moment frame with in-situ shear walls	
		23	Moment frame with precast shear walls	
		24	Moment frame	
		25	Prestressed moment frame with shear walls	
	Precast concrete	26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
	Moment-resisting frame	29	With brick masonry partitions	
		30	With cast in-situ concrete walls	
		31	With lightweight partitions	
Steel	Braced frame	32	Concentric connections in all panels	
		33	Eccentric connections in a few panels	
		34	Bolted plate	
		35	Welded plate	
		36	Thatch	
	Load-bearing timber frame	37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
		38	Masonry with horizontal beams/planks at intermediate levels	
Timber		39	Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
		41	Stud-wall frame with plywood/gypsum board sheathing	
		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
Other	Seismic protection systems	44	Building protected with seismic dampers	
	Hybrid systems	45	other (described below)	

Isolators consist of laminated rubber bearings. Superstructures are unreinforced brick masonry buildings with reinforced concrete floor/roof slabs.

3.2 Gravity Load-Resisting System

The vertical load-resisting system is reinforced masonry walls. Gravity load is carried by the masonry load-bearing walls, which transfer them to the foundation through the isolation pads.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is reinforced masonry walls. System of structure: The base isolation house structure system consists of isolation layer (laminated rubber bearing isolators), superstructure and substructure. The isolation layer is located on the top of walls or columns in basement or in the first story of house without basement. The superstructure consists of common multi-stories brick masonry wall with reinforced concrete floors/roof, which is same as the general house structure supported on the rubber bearing isolators. The substructure consists of a common basement and base, which is same as the general building structure. The laminated rubber bearing isolators are the key lateral load resisting elements of seismic resistance. Their features are: Size: diameter 350 mm - 600 mm, height 160 mm -200 mm. Component: thickness 3-8mm rubber layers bond with thickness 1-3 mm steel sheets interval each other. Characteristics of isolation pads: High vertical stiffness and high vertical compression capacity for supporting superstructure. Low horizontal stiffness, large horizontal deformation capacity for isolating ground motion. Suitable value of damping ratio for dissipating ground motion energy. Adequate initial horizontal stiffness for resisting wind loads. Seismic performance: During earthquake, the isolation structure will work as follows: 1. All horizontal deformations of superstructure elements will concentrate on the isolation layer, the structure will be kept within the elastic limit, so that no damages will occur in the structure. 2. The natural period of isolation structure will become very long due to the low horizontal stiffness of isolation layer, so that the isolation structural seismic response will be reduced to 1/4 - 1/8 of the non-isolation structural seismic response, protecting the structure from any damage and becoming very safe in strong earthquake. 3. The horizontal deformation of rubber bearing isolators will be limited by enough damping ratio.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 48 and 48 meters, and widths between 12 and 12 meters. The building is 6 storey high. The typical span of the roofing/flooring system is 3 meters. Typical Story Height: According to China code, the limited number N of stories for unreinforced brick masonry house in seismic areas is: Seismic Intensity (Ground motion) VI (55 gal) VII (110 gal) VIII (220 gal) IX (400gal) N general buildings 8 7 6 4 N isolation building 9 8 7 - 8 5 - 6 Typical Span: The span, center-to-center distance between the walls for wall structures, is 3.2 - 4.2. The typical storey height in such buildings is 3 meters. The typical structural wall density is none.

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
	Wood planks or beams that support clay tiles		
Timber	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		

3.5 Floor and Roof System

	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls	
Other	Described below	

The floor/roof is considered to be a rigid diaphragm.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep toundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

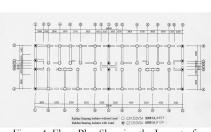


Figure 4: Floor Plan Showing the Layout of Isolation Devices

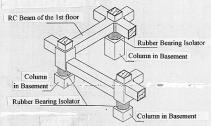


Figure 5A: Perspective Drawing Showing Connection between Isolators and Adjacent Structural Elements

Figure 5B: Comparison of Seismic Performance for a Base Isolated and a Conventional Building

Figure 5C: Testing Facility for Base Isolation

Figure 5D: Components of Rubber Isolation

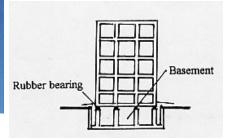


Figure 5G: Installation of Base Isolation Devices

Figure 5E: Building Elevation Showing the Location of Base Isolation Devices

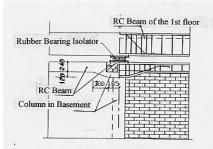


Figure 5F: Base Isolation Device and the Connection with Adjacent Structural Elements

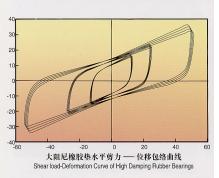


Figure 5I: Load-Deformation Curve for Isolation Devices

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 21-50 housing unit(s). 32 units in each building. Usually there are 10 - 32 units in building. One family typically occupies one housing unit. The number of inhabitants in a building during the day or business

hours is more than 20. The number of inhabitants during the evening and night is others (as described below). On average, Chinese families consist of 4 persons. Night time occupancy is more than 40 persons. On average, a Chinese

family consists of 4 persons.

4.2 Patterns of Occupancy

10 - 32 families typically occupy one house. (2 - 4 families typically occupy each floor and there are usually 5 - 8 floors in a house.).

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

Economic Level: For Middle Class the Housing Price Unit is 200,000 and the Annual Income is 30,000.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	

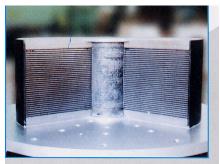


Figure 5H: Lead-Core Rubber Isolation Devices

4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 1 bathroom(s) without toilet(s), 1 toilet(s) only and 1 bathroom(s) induding toilet(s).

4.4 Ownership

The type of ownership or occupancy is renting, outright ownership, ownership with debt (mortgage or other) and individual ownership.

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ow nership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/	Statement	Most appropriate type		
Architectural Feature		True	False	N/A
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.			

Building Configuration	The building is regular with regards to both the plan and the elevation.		
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.		
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.		
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.		
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.		
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);		
Foundation- wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are dow eled into the foundation.		
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps		
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.		
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).		
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).		
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)		
Additional Comments	The superstructure and foundation is individually connected to the rubber bearing isolators with b resistant to transfer the seismic forces (vertical loads, shear loads and moments) between the four		

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	
Wall			
Frame		During earthquake, the isolation structure will work as follows: 1. All horizontal deformations of superstructure	

(columns, beams)	elements will concentrate on the isolation layer, the structure will be kept within the elastic limit, so that no damages will occur in the structure. 2. The natural period of isolation structure will become very long due to the low horizontal stiffness of isolation layer, so that the isolation structural seismic response will be reduced to 1/4 - 1/8 of the non-isolation structural seismic response, protecting the structure from any damage and becoming very safe in strong earthquake. 3. The horizontal deformation of rubber bearing isolators will be limited by enough damping ratio.	
Roof and floors		
Other		

1. The natural period of isolation structure is very long due to the low horizontal stiffness of isolation layer. This causes the isolation structural seismic response to reduce to 1/4 - 1/8 of the response of similar non-isolation structure. This protects the structure from any damage and makes it very safe in strong earthquake 2. No damage has

been observed for base-isolation buildings in many strong earthquakes in China so far.

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *E: LOW VULNERABILITY (i.e., very good seismic performance)*, the lower bound (i.e., the worst possible) is D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance), and the upper bound (i.e., the best possible) is *F: VERY LOW VULNERABILITY (i.e., excellent seismic performance)*.

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	C	D	Е	F
Class						

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1994	Taiwan Straits, China	7.3	VIII (220 GAL)
1995	Yunan Province	6.5	VIII (220 GAL)
1996	Yunan Province	7	VIII (220 GAL)
2000	Xinjian Autonomous	6.2	VII (110 GAL)

No damage has been observed in base-isolation buildings during these earthquakes.

Figure 6A: Typical Earthquake Damage of Brick Masonry Buildings Without Base Isolation (1976 Tangshan Earthquake)

Figure 6B: Base Isolated Brick Masonry Building Undamaged in the 1996 Yunan Earthquake (Magnitude 7.0)

6. Construction

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls		1 ,	mortar 1:6 cement/sand, brick size 240 x 115 x 53 mm	
Foundation	IRC I	Compression fc = 10 MPa, steel yield fy= 235 MPa		Low strength concrete and mild-steel is used for foundation.
Frames (beams & columns)				
Roof and floor(s)	IRC I	Compression $fc = 17$ MPa, Steel yield fy = 335 MPa		

6.2 Builder

It is typically built by developers for sale.

6.3 Construction Process, Problems and Phasing

The entire process of building construction is as follows: 1. Developer buys the land and then entrusts the designer for designing the building with base isolation. 2. Developer selects the construction company for constructing the designed building. 3. Developer buys the rubber bearing isolators from special factory. 4. Developer entrusts the testing center to test and check the characteristics of rubber bearing isolators that will be used in the construction. 5. Contractor constructs the foundation and basement. 6. Contractor fixes the rubber bearing isolators on top of the basement. This process may be manually done. 7. Contractor constructs the superstructure on rubber bearing isolators. 8. Contractor constructs the non-structural elements and finishing of the building. 9. The quality of construction is checked to ensure that it is acceptable. The superstructure is checked to ensure that it has free space to move in horizontal and vertical directions during earthquake. The horizontal space should be greater than 200 mm,

and the vertical space should be greater than 20 mm. 10. Developer sells the house. The construction of this type of

housing takes place in a single phase. Typically, the building is originally designed for its final constructed size.

6.4 Design and Construction Expertise

The design of superstructure and substructure of buildings can be done by the general structural engineers. The structural engineers who have enough knowledge and experience in designing the base-isolation buildings can do the design of base-isolation system. Engineers design the base-isolator, superstructure and substructure. Architects design the building plan, and details of architectural treatment for isolation layer.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. 1. Building design code for seismic resistance (GB50011-2001). 2. Technical rule for seismic isolation with laminated rubber bearing isolators (CECS 126-2001). 3. Standard of rubber bearing isolators (JG 118-2000). The year the first code/standard addressing this type of construction issued was 2000. Same as above. The most recent code/standard addressing this construction type issued was 2000.

Building code is enforced through quality control procedures during construction. Separate quality certification is not required.

6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Builder.

6.8 Construction Economics

RMB 1200 / m^2 (US\$ 145 / m^2). 20 days are required for the construction of foundation and basement, during which labor with only general technical level is required 3 days are required for fixing the rubber bearing isolators, during which labor with only general technical level is required 60 days are required for constructing the superstructure (around 10 days each storey), during which labor with only general technical level is required to required.

7. Insurance

Earthquake insurance for this construction type is typically unavailable. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable. NA.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Strengthening of Existing C	Construction :
-----------------------------	----------------

Seismic Deficiency	Description of Seismic Strengthening provisions used
NA	NA

No damages have been experienced for this type of buildings during past earthquakes in China. So far, there has been no necessity to strengthen the isolation buildings.

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

NA.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? NA.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? NA.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

NA.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? NA.

Reference(s)

- 1. Seismic Control of Structures Zhou F. L. China Seismic Publishing House 1997
- Design Method of Isolating And Energy Dissipating System for Earthquake Resistant Structures Zhou F. L., Stiemer S. F. and Cherry S. Proc. of 9th World Conference on Earthquake Engineering, Tokyo-Kyoto. Aug. 1988. Vol. VIII 1998
- A New Isolation and Energy Dissipating System for Earthquake Resistant Structures Zhou F. L., Stiemer S.F. and Cherry S. Proc. of 9th European Conference on Earthquake Engineering. Moscow, Sept. 1990 1990
- The Technical Report on Mission As Consultant of UNIDO Zhou, F.L.
 Summary of the International Post-SMiRT conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations and Structures, Santiago, Chile. August 1995 1995
- 5. Progress of Application and Development in Base Isolation and Passive Energy dissipation for dvil and Industrial Structures Zhou, F.L.

Proc of International Post-SMiRT Conference Seminar. Cheju, Korea, August 1999 1999

6. Progress of Application, New Projects, R and D and Development of Design Rules for Seismic Isolation and Passive Energy Dissipation of Civil Buildings, Bridges and Nudear and Non-Nudear Plants in P R China Zhou, F.L.

Proc.of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Seismic Vibration of Structures. Taormina, Italy, August 1997 1997

- New System of Earthquake Resistant Structures in Seismic Zone Zhou, FL.
 Computational Mechanics in Structural Engineering. Elsevier Applied Science Publishers Ltd., London and New York 1991
- Recent Research Development and Application on Seismic Isolation of Buildings in P R China Zhou,F.L., Kelly,J.M., Fuller,K.N.G., and Pan,T.C.
 Proc. of International Workshop IWADBI, Shantou, China, May 1994 1994
- Design control of structural response for seismic isolation system Zhou, F.L. Earthquake Engineering and Engineering Vibrations, No.1, 1993 1993
- Technical rule for seismic isolation with laminated rubber bearing isolators Zhou,F.L. and Zhou,X.Y.
 Chinese Engineering Construction Standard, CECS 126:2001, Beijing, China 2000

Author(s)

Fu L. Zhou
 Professor, Guangzhou University
 No. 248 Guang Yuan Zhong Road, Guangzhou 510405, CHINA
 Email:zhoufl@cae.cn FAX: 86-20-8380 6291

2. Zhong G. Xu

Associate Professor, Guangzhou University No. 248 Guang Yuan Zhong Road, Guangzhou 510405, CHINA Email:xuzhonggen@263.net FAX: 86-20-8657 5840

 Wen G. Liu Associate Professor, Guangzhou University No. 248 Guang Yuan Zhong Road, Guangzhou 510405, CHINA Email:liw eng@sina.com FAX: 86-20-8657 5840

Reviewer(s)

 Ravi Sinha Professor Civil Engineering Department, Indian Institute of Technology Bombay Mumbai 400 076, INDIA Email:rsinha@civil.iitb.ac.in FAX: (91-22) 2572-3480, 2576-7302

Save page as

