World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active A reas of the World

an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT Concrete Frame and Shear Wall Building

Report #	6
Report Date	05-06-2002
Country	CHILE
Housing Type	RC Moment Frame Building
Housing Sub-Type	RC Moment Frame Building : Dual System - Frame with Shear Wall
Author(s)	Ofelia Moroni, Cristian Gomez, Maximiliano Astroza
Reviewer(s)	Sergio Alcocer

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.

Summary

Buildings of this type are used mainly for offices or hotels, and they are found in large cities throughout the country. At the present time this building type represents about 15-20% of the high-rise building stock in Chile (building with more than 10 stories). The structural system consists of reinforced concrete frames and shear walls. The walls are typically located around the staircases and the elevators, while the frames may be uniformly distributed in plan or at

the perimeter only. Most of the lateral load-bearing elements exist along the full building height in the elevation and in both directions of the building plan. In some buildings the walls are perforated with openings and coupled with lintel beams. Some buildings of this type have one or more basement floors. In general, these buildings are quite stiff. Seismic performance is very good, strength and stiffness are controlled, and torsion effects are minimal. Problems that may occur in the future are related to the reduction in the wall density, and introduction of soft-story or torsional effects.

1. General Information

Buildings of this construction type can be found in all main cities of the country: Iquique, Antofagasta, Concepción, Temuco, Valparaíso, Viña del Mar and Santiago. This type of housing construction is commonly found in urban areas. This construction type has been in practice for less than 50 years.

Currently, this type of construction is being built. .

Figure 1A:Typical building

Figure 1B: Typical building

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent

buildings. According to NCH433.0f96 the distance must be at least 1.5 cm or 0.002 x total height of the building. In addition there are some dispositions about distance to neighbor site or free space for parking. So, individual buildings in a block may be separated up to 10 meters. They are typically located dose together in some specific neighborhoods. In Santiago there are some new developed neighborhood where corporate buildings are widely spaced. When

separated from adjacent buildings, the typical distance from a neighboring building is 10 meters.

2.2 Building Configuration

Plan shapes range from rectangular to octagonal. In this country there is not standardization for any element: window, door, etc, so it is not possible to provide any number or size of openings.

2.3 Functional Planning

The main function of this building typology is mixed use (both commercial and residential use). In some buildings commercial ground floor indudes a big hall. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. Modern buildings have pressurized stairs and the taller ones also have a helicopter landing strip on the top.

2.4 Modification to Building

The most popular may be infill balconies.

Figure 2A: Plan of a typical building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Structu	re #	Subtypes	Most appropriate type
	Stone Masonry W. Ja	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
	w ans	2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements		
	5	Adobe block walls		
	6	Rammed earth/Pise construction		
	7	Brick masonry in mud/lime mortar		
	I In min for modern and an another	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	w alls	9	Brick masonry in lime/cement mortar	

		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural concrete	Structural wall	22	Moment frame with in-situ shear walls	
		23	Moment frame with precast shear walls	
		24	Moment frame	
	Precast concrete	25	Prestressed moment frame with shear walls	
		26	Large panel precast walls	
		27	Shear wall structure with walls cast-in-situ	
		28	Shear wall structure with precast wall panel structure	
		29	With brick masonry partitions	
	Moment-resisting frame	30	With cast in-situ concrete walls	
		31	With lightweight partitions	
Steel	Densed forms	32	Concentric connections in all panels	
		33	Eccentric connections in a few panels	
	Step of year and year and	34	Bolted plate	
		35	Welded plate	
		36	Thatch	
Timber	Load-bearing timber frame	37	Walls with bamboo/reed mesh and post (Wattle and Daub)	
		38	Masonry with horizontal beams/planks at intermediate levels	
		39	Post and beam frame (no special connections)	
		40	Wood frame (with special connections)	
		41	Stud-wall frame with plywood/gypsum board sheathing	
		42	Wooden panel walls	
		43	Building protected with base-isolation systems	
Other	Seismic protection systems	44	Building protected with	

		seismic dampers	
Hybrid systems	45	other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is reinforced concrete structural walls (with frame). Shear walls and frames play both role as both the lateral and gravity load-bearing elements. In addition, gravity load-resisting beams may exist.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is reinforced concrete structural walls (with frame). Shear walls provide enough strength and stiffness to control displacements in the lower floors while the frames control displacements in the upper floors. In some cases the walls are coupled with lintel beams, which are able to dissipate energy when subjected to severe earthquakes and are easily repairable afterwards. In general these buildings are quite stiff because they must resist a base shear of 5 - 6.7% depending on the seismic zone and the story drift must be equal or less than 0.002. The façade frames may not be linked to the stair or elevator walls, in which case the slab must transfer lateral loads from one element to the other. Stiffness and mass distribution are regular in plan but some irregularities may appear at the top floors due to reduction in floor area. Most of them may have symmetry axes in at least one direction of the plan. The ratio Total Height/Period (H/T) has been defined as representative of building stiffness, being normal values between 40 to 70 m/sec. However, in the last decade this value had diminished and about 7% of the buildings have

H/T between 20 to 40 m/sec. This may lead to larger story drift and damage due to earthquakes.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 20 and 20 meters, and widths between 40 and 40 meters. The building has 10 to 30 storey(s). The typical span of the roofing/flooring system is 8 meters. Typical plan dimensions: Vary from case to case, average area is 750 m². Typical story height: Average story height is 3.2 m. Story height varies from 2.9 to 3.5 m. Typical span: Variation of typical span is 6 - 10 m. The typical storey height in such buildings is 3.2 meters. The typical structural wall density is none. Ranges from 1.5% to 2.5% in each direction. Only 25% buildings of this type have wall density less than 1.5% but larger than 0.5%. Figure 5 shows the variation on time of the wall density.

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		

3.5 Floor and Roof System

	Wood shingle roof	
Timber	Wood planks or beams that support clay tiles	
	Wood planks or beams supporting natural stones slates	
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles	
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls	
Other	Described below	

The floors and the roof are considered as rigid diaphragms for seismic analysis. With post-tensioned slabs larger span between the central core walls (elevators and stairs) and some frames can be used.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	\checkmark
	Mat foundation	\checkmark
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
Deep loundation	Steel skin friction piles	
	Wood piles	
	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

Probably the mat foundation is more typical as most of these buildings possess a basement.

Figure 3: Key load-bearing elements

Figure 4B: Typical structural details: columns

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 21-50 housing unit(s). One institution may own one or more floors. The number of inhabitants in a building during the day or business hours is more than 20. The number of inhabitants during the evening and night is 5-10. During the day will have complete occupancy, however some buildings may also be occupied in the night (night shifts).

4.2 Patterns of Occupancy

These are mainly office buildings and therefore nobody resides in them with the exception of some administrative workers unless the building is used as an hotel.

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	
c) middle-income class	
d) high-income class (rich)	

We are identifying the entrepreneurs or the owners of the offices, not the people working in these buildings.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	

Investment pools	
Government-ow ned housing	
Combination (explain below)	
other (explain below)	

Government owned offices. In each housing unit, there are no bathroom(s) without toilet(s), no toilet(s) only and no bathroom(s) induding toilet(s).

Maybe 5 to 10 bathrooms per floor. .

4.4 Ownership

The type of ownership or occupancy is renting, outright ownership, ownership with debt (mortgage or other), individual ownership, ownership by a group or pool of persons and long-term lease.

Type of ownership or occupancy?	Most appropriate type
Renting	
outright ownership	
Ownership with debt (mortgage or other)	
Individual ownership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/			Most appropriate type		
Architectural Feature	Statement	True	False	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.				
Building Configuration	The building is regular with regards to both the plan and the elevation.				
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.				
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.				
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.				
	Height-to-thickness ratio of the shear walls at each floor level is:				

Wall proportions	Less than 25 (concrete walls);		
n an proportions	Less than 30 (reinforced masonry walls);		
	Less than 13 (unreinforced masonry walls);		
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are doweled into the foundation.		
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps		
The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; Wall openings For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.			
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).		
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).		
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)		
Additional Comments			

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall	None	The main characteristic of Chilean buildings is the high wall density ratio	
Frame (columns, beams)	Non-structural elements not properly separated from the structures.		Tilt out of plane of non- structural elements; short column failures
Roof and floors	Some damage has been reported in slab with openings, i.e. between stairs and elevators, when there are not lintels and the slab works as a coupling element and no special reinforcements have been provided.		

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is F: VERY LOW VULNERABILITY (i.e., excellent seismic performance), the lower bound (i.e., the worst possible) is E: LOW VULNERABILITY (i.e., very good seismic performance), and the upper bound (i.e., the best possible) is F: VERY LOW VULNERABILITY (i.e., excellent

seismic performance).

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability	А	В	С	D	E	F
Class						

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1960	Valdivia, X Region	9.5	XI (MMI)
1985	Llolleo	7.8	VIII (MMI)

In the southern part of Chile, buildings of this type did not exist at the time of the 1960 earthquake, and the only reported example of damage is the hospital in Valdivia. In the 1985 earthquake, structural damage was not reported in buildings of this type with the exception of the San Antonio Hospital, located very dose to epicenter. Out of plane tilting occurred in some non-structural masonry walls at the third floor level (FIGURE 6A) and some columns, not properly confined, in the first floor were damaged at the top. (FIGURE 6B and FIGURE 6C). In fact there were two building blocks-one of them was 3-story high and one basement with no damage, whereas the other one was 4 story high with a flower stand on the top floor that was damaged. The other photo (FIGURE 6D) represents a 4-story

building at Valparaiso that had experienced some damage in interior panel and contents.

Figure 6A: San Antonio Hospital, March 3, 1985 Llolleo earthquake

The has been a second a second

Figure 6B: San Antonio Hospital. First floor columns damaged in the 1985 Llolleo earthquake

Figure 6C: San Antonio Hospital, close-up damaged in the 1985 Llolleo earthquake

Figure 6D: Medicine School, University of Valparaisos, 1985 Llolleo earthquake, damage in

6. Construction

6.1 Building Materials

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls	Reinforced concrete	Tensile strength of concrete: 1.5-4.0 MPa, Cylinder compressive strength of concrete: 25-35 MPa, Shear strength of concrete: 1.5-2.0 MPa	3:1:0.5	st/f [°] c/shear strength
Foundation	Reinforced concrete Tensile strength of concrete: 1.4-2.2 MPa, Cylinder compressive strength of concrete: 25 MPa, Shear strength of concrete: 1.5 MPa 3:		3:1:0.5	
Frames (beams & columns)	Reinforced concrete	Tensile strength of concrete: 1.5-4.0 MPa, Cylinder compressive strength of concrete: 25-35 MPa, Shear strength of concrete: 1.5-2.0 MPa	3:1:0.5	
Roof and floor(s)	Reinforced concrete	Cylinder compressive strength of concrete: 25-30 MPa		

6.2 Builder

It is built by developers or as initiative of a firm or a hotel.

6.3 Construction Process, Problems and Phasing

The building design must follow the NCh433.of96 code, although nobody checks this. In case of damage an arbitrage process may take place at the court of justice. The landowner and a construction firm (developer) hire an architectural office and structural engineer to design the building. Modern equipment such as crane, premix concrete, industrial

formwork etc. is used in the construction. The construction of this type of housing takes place in a single

phase. Typically, the building is originally designed for its final constructed size.

6.4 Design and Construction Expertise

The structural engineer typically has a background consisting of 6 years of academic studies and more than 3-5 years of experience. The construction engineer may have 6 years of studies and less experience than the structural engineer. The inspection during the construction is not mandatory and there is no peer review of the structural project. The designer

may visit the construction site once or twice during the construction.

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. Nch433.of96 Seismic Design. The year the first code/standard addressing this type of construction issued was Until 1993 the NCh433.of72 was in force. The last two numbers indicates the year since the code is in force. Provisionally dispositions to design this type of buildings

existed since 1966. Nch 433.of96 Seismic design of Buildings. The design of structural elements follows ACI 318-95, with some exceptions: reduced reinforcement cover, non-confinement at the wall ends, 16 MPa minimum compressive strength. B.2.1 Appendix of the NCH433.0f96 Seismic Design of Buildings says: "The design of frames in buildings with "Frame with concrete shear walls-dual system", must follow at least ACI318-95 dispositions 21.8.4 and 21.8.5 when the 75% or more of the story shear in any direction of analysis is resisted by the shear walls and any frame individually resists less than 10% of the story shear. The same may apply when the seismic forces acting on the building are calculated with a reduced modification factor". B.2.2 says: "The shear wall design doesn't need to follow

dispositions 21.6.6.1 to 21.6.6.4 of ACI318-95. The most recent code/standard addressing this construction type

issued was 1996. Title of the code or standard: Nch433.of96 Seismic Design Year the first code/standard addressing this type of construction issued: Until 1993 the NCh433.of72 was in force. The last two numbers indicates the year since the code is in force. Provisionally dispositions to design this type of buildings existed since 1966. National building code, material codes and seismic codes/standards: Nch 433.of96 Seismic design of Buildings. The design of structural elements follows ACI 318-95, with some exceptions: reduced reinforcement cover, non-confinement at the wall ends, 16 MPa minimum compressive strength. B.2.1 Appendix of the NCH433.0f96 Seismic Design of Buildings says: "The design of frames in buildings with "Frame with concrete shear walls-dual system", must follow at least ACI318-95 dispositions 21.8.4 and 21.8.5 when the 75% or more of the story shear in any direction of analysis is resisted by the shear walls and any frame individually resists less than 10% of the story shear. The same may apply when the seismic forces acting on the building are calculated with a reduced modification factor". B.2.2 says: "The Page 12 shear wall design doesn't need to follow dispositions 21.6.6.1 to 21.6.6.4 of ACI318-95. When was the most recent Code/standard addressing this construction type issued? 1996.

The building design must follow the NCh433.of96 code, although nobody checks this. In case of damage an arbitration process may take place at the court of justice.

6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s) and Tenant(s).

6.8 Construction Economics

For an standard building construction may be 15 - 30 UF/m² (400 - 800 US/m²). Selling price will be 40 - 50 UF/m² (1,050 - 1,400 US/m^2). In the last years, "intelligent buildings" had been constructed that indude air conditioning, computer, energy-savings devices, etc. For this case the construction cost may be up to 30-45 UF/m² (800 - 1,225 US/m^2). Selling price will be 50 - 70 UF/m² (1,400 - 1,850 US/m^2). Nowadays this is quite rapid, probably one or two floors per month.

7. Insurance

Earthquake insurance for this construction type is typically available. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable. Earthquake insurance are optional added to fire insurance. In case of damage, this insurance will cover repair work and contents.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Strengthening of Existing Construction :

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Short column	To separate the non-structural elements from the column		
Non-structural elements connections	To provide support against out of plane deformations		

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

The hospital at San Antonio was repaired however the details are not available.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? This is not a common activity in Chile. The only situation when buildings are repaired is after an earthquake, when some constructive defidencies appeared. It is normal to observe some small cracks in the concrete.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? I suppose so.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

A contractor performed the construction, of course an architect and engineer were involved.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? Non subsequent earthquake had occurred in central zone of Chile until this report was submitted (2001).

Figure 7A: Illustration of seismic-strengthening techniques

Figure 7B: Illustration of seismic-strengthning techniques

Reference(s)

- Ingenier

 (Ed.) por Flores Rodrigo and P. Bonelli

 "Actividades de Investigaci 1993
- 2. Caracterizaci

Cristian Gomez Civil Engineer Thesis, Universidad de Chile 2001

3. Caracterizaci

M. Guzm Civil Engineer Thesis, Universidad de Chile 1998

- Apuntes para el curso CI52G, Proyecto de Hormig M. Kupfer and R. Lagos Depto de Ing. Civil, Universidad de Chile 1999
- 5. Evoluci M. Moroni and M. Guzm Bolet 1998
- Aplicaci
 C. Mu
 Civil Engineer Thesis, Universidad de Chile 1999
- History of Chilean Seismic Regulations M. Sarrazin Bulletin IISEE 1998 26

Author(s)

- Ofelia Moroni Civil Engineer/Assistant Professor, University of Chile Casilla 228/3, Santiago, CHILE Email:mmoroni@cec.uchile.cl FAX: 562-6892833
- Cristian Gomez Civil Engineer/Research Assistant, University of Chile Casilla 228/3, Santiago 228/3, CHILE Email:crgomez@ccc.uchile.cl FAX: 562-6892833
- Maximiliano Astroza Civil Engineer/ Associate Professor, University of Chile Casilla 228/3, Santiago, CHILE Email:mastroza@ccc.uchile.cl FAX: 562-6892833

Reviewer(s)

 Sergio Alcoer Director of Research Circuito Escolar Cuidad Universitaria, Institute of Engineering, UNAM Mexico DF 4510, MEXICO Email:salcoerm@iingen.unam.mx FAX: +52 (55) 56162894

Save page as

