World Housing Encyclopedia

an Encyclopedia of Housing Construction in Seismically Active Areas of the World

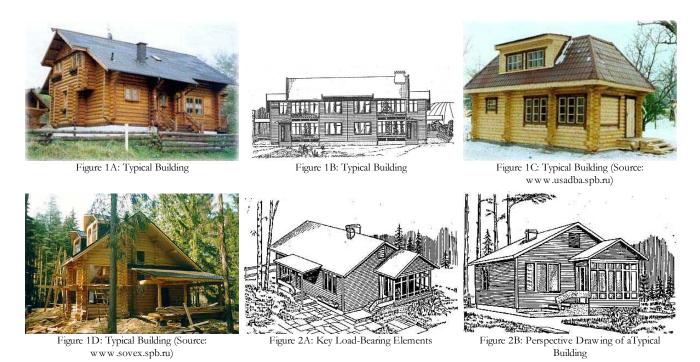
an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE)

HOUSING REPORT **Timber log building**

Report #	56
Report Date	05-06-2002
Country	RUSSIAN FEDERATION
Housing Type	Timber Building
Housing Sub-Type	Timber Building : Wood panel walls
Author(s)	Mark Klyachko, Andrey Benin, Janna Bogdanova
Reviewer(s)	Svetlana Uranova

Important

This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations.


Summary

This is a rural housing construction practice widespread in the forests of Russia. Buildings of this type are common for seismically prone areas of Russia (Far East, Siberia, Baikal Lake Region, North Caucasus). The load-bearing structure is made of wood. To construct the walls, timber logs are sawn horizontally in a square or circular cross section with special end joints (similar to dovetail joints). Buildings have timber roofs and fieldstone or concrete strip foundations. Typical seria 146-115-77 cm of 'Giprolesprom' for seismic regions is an example of this building type. Seismic performance of these buildings is good if the construction quality is adequate.

1. General Information

Buildings of this construction type can be found in seismically prone areas of Russia (Far East, Siberia, Baikal Lake Region, North Caucasus) where this construction type covers 5 to100% of the housing stock. This type of housing construction is commonly found in rural areas. This construction type has been in practice for more than 200 years.

Currently, this type of construction is being built. This is a traditional construction practice in the region followed for many centuries.

2. Architectural Aspects

2.1 Siting

These buildings are typically found in flat terrain. They do not share common walls with adjacent buildings. It can be more than 10 meters also When separated from adjacent buildings, the typical distance from a neighboring building is 10 meters.

2.2 Building Configuration

All buildings are rectangular in shape. Windows: 10-15%; Doors: 5-8%.

2.3 Functional Planning

The main function of this building typology is multi-family housing. In a typical building of this type, there are no elevators and 1-2 fire-protected exit staircases. Each unit has its own entrance.

2.4 Modification to Building

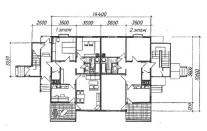


Figure 3: Plan of aTypical Building

3. Structural Details

3.1 Structural System

Material	Type of Load-Bearing Stru	cture #	Subtypes	Most appropriate type
	Stone Masonry Walls	1	Rubble stone (field stone) in mud/lime mortar or without mortar (usually with timber roof)	
		2	Dressed stone masonry (in lime/cement mortar)	
		3	Mud walls	
	Adobe/ Earthen Walls	4	Mud walls with horizontal wood elements	
		5	Adobe block walls	
		6	Rammed earth/Pise construction	
		7	Brick masonry in mud/lime mortar	
	Unreinforced masonry	8	Brick masonry in mud/lime mortar with vertical posts	
Masonry	w alls	9	Brick masonry in lime/cement mortar	
		10	Concrete block masonry in cement mortar	
		11	Clay brick/tile masonry, with wooden posts and beams	
	Confined masonry	12	Clay brick masonry, with concrete posts/tie columns and beams	
		13	Concrete blocks, tie columns and beams	
		14	Stone masonry in cement mortar	
	Reinforced masonry	15	Clay brick masonry in cement mortar	
		16	Concrete block masonry in cement mortar	
		17	Flat slab structure	
		18	Designed for gravity loads only, with URM infill walls	
	Moment resisting frame	19	Designed for seismic effects, with URM infill walls	
		20	Designed for seismic effects, with structural infill walls	
		21	Dual system – Frame with shear wall	
Structural conc	crete Structural wall	22	Moment frame with in-situ shear walls	

		23 Moment frame with precast shear walls	
		24 Moment frame	
		25 Prestressed moment frame with shear walls	
	Precast concrete	26 Large panel precast walls	
		27 Shear wall structure with walls cast-in-situ	
		28 Shear wall structure with precast wall panel structure	
		29 With brick masonry partitions	
	Moment-resisting frame	30 With cast in-situ concrete w alls	
		31 With lightweight partitions	
Steel	Braced frame	32 Concentric connections in all panels	
		33 Eccentric connections in a few panels	
	Structural wall	34 Bolted plate	
		35 Welded plate	
		36 Thatch	
		37 Walls with bamboo/reed mesh and post (Wattle and Daub)	
		Masonry with horizontal beams/planks at intermediate levels	
Timber	Load-bearing timber frame	39 Post and beam frame (no special connections)	
		40 Wood frame (with special connections)	
		Stud-wall frame with plyw ood/gypsum board sheathing	
		42 Wooden panel walls	
		43 Building protected with base-isolation systems	
Other	Seismic protection systems	44 Building protected with seismic dampers	
	Hybrid systems	45 other (described below)	

3.2 Gravity Load-Resisting System

The vertical load-resisting system is others (described below). The load-bearing structure is made of wood. Walls are made of horizontal square sawn timber logs with special end joints (similar to dovetail joints), as illustrated in Figure 4B. Vertical wall elevation is shown on Figure 4A. Buildings have timber roof and fieldstone or concrete strip foundation.

3.3 Lateral Load-Resisting System

The lateral load-resisting system is others (described below). Same as vertical load-resisting system.

3.4 Building Dimensions

The typical plan dimensions of these buildings are: lengths between 14.4 and 14.4 meters, and widths between 6.6 and 9.9 meters. The building has 1 to 2 storey(s). The typical span of the roofing/flooring system is 3.6 meters. The typical storey height in such buildings is 2.7 meters. The typical structural wall density is up to 10 %. 8-12%.

3.5 Floor and	Roof System
---------------	-------------

Material	Description of floor/roof system	Most appropriate floor	Most appropriate roof
	Vaulted		
Masonry	Composite system of concrete joists and masonry panels		
	Solid slabs (cast-in-place)		
	Waffle slabs (cast-in-place)		
	Flat slabs (cast-in-place)		
	Precast joist system		
Structural concrete	Hollow core slab (precast)		
	Solid slabs (precast)		
	Beams and planks (precast) with concrete topping (cast-in-situ)		
	Slabs (post-tensioned)		
Steel	Composite steel deck with concrete slab (cast-in-situ)		
	Rammed earth with ballast and concrete or plaster finishing		
	Wood planks or beams with ballast and concrete or plaster finishing		
	Thatched roof supported on wood purlins		
	Wood shingle roof		
Timber	Wood planks or beams that support clay tiles		
	Wood planks or beams supporting natural stones slates		
	Wood planks or beams that support slate, metal, asbestos-cement or plastic corrugated sheets or tiles		
	Wood plank, plywood or manufactured wood panels on joists supported by beams or walls		
Other	Described below		

Wood planks or beams that support slate, metal asbestos-cement or plastic corrugated sheets or tiles.

3.6 Foundation

Туре	Description	Most appropriate type
	Wall or column embedded in soil, without footing	
	Rubble stone, fieldstone isolated footing	
	Rubble stone, fieldstone strip footing	
Shallow foundation	Reinforced-concrete isolated footing	
	Reinforced-concrete strip footing	
	Mat foundation	
	No foundation	
	Reinforced-concrete bearing piles	
	Reinforced-concrete skin friction piles	
Deep foundation	Steel bearing piles	
	Steel skin friction piles	
	Wood piles	

	Cast-in-place concrete piers	
	Caissons	
Other	Described below	

Isolated footings are common in some cases.

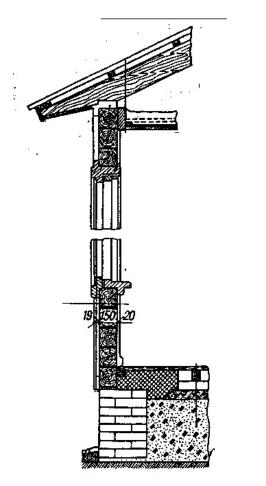


Figure 4A: Wall Section

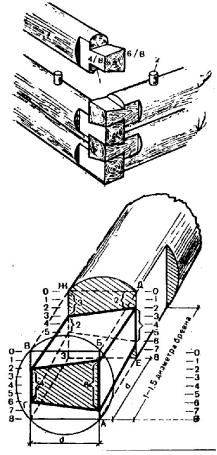


Figure 4B: Timber Log Connection

4. Socio-Economic Aspects

4.1 Number of Housing Units and Inhabitants

Each building typically has 2 housing unit(s). 2 units in each building. Usually there are 2 - 4 units in each building. The number of inhabitants in a building during the day or business hours is 5-10. The number of inhabitants during the evening and night is 5-10.

4.2 Patterns of Occupancy

One family per unit (apartment).

4.3 Economic Level of Inhabitants

Income class	Most appropriate type
a) very low-income class (very poor)	
b) low-income class (poor)	

c) middle-income class	
d) high-income class (rich)	

Rich people use timber log houses as cottages.

Ratio of housing unit price to annual income	Most appropriate type
5:1 or worse	
4:1	
3:1	
1:1 or better	

What is a typical source of financing for buildings of this type?	Most appropriate type
Owner financed	
Personal savings	
Informal network: friends and relatives	
Small lending institutions / micro- finance institutions	
Commercial banks/mortgages	
Employers	
Investment pools	
Government-owned housing	
Combination (explain below)	
other (explain below)	

In each housing unit, there are 1 bathroom(s) without toilet(s), no toilet(s) only and 1 bathroom(s) induding toilet(s).

Usually one bathroom per unit. .

4.4 Ownership

The type of ownership or occupancy is outright ownership and long-term lease.

Type of ownership or occupancy?	Most appropriate type
Renting	
out r ight ownership	
Ownership with debt (mortgage or other)	
Individual ow nership	
Ownership by a group or pool of persons	
Long-term lease	
other (explain below)	

Own outright (for one apartment), long-term lease (most common).

5. Seismic Vulnerability

5.1 Structural and Architectural Features

Structural/			Most appropriate type		
Architectural Feature	Statement	Yes	No	N/A	
Lateral load path	The structure contains a complete load path for seismic force effects from any horizontal direction that serves to transfer inertial forces from the building to the foundation.				
Building Configuration	The building is regular with regards to both the plan and the elevation.				
Roof construction	The roof diaphragm is considered to be rigid and it is expected that the roof structure will maintain its integrity, i.e. shape and form, during an earthquake of intensity expected in this area.				
Floor construction	The floor diaphragm(s) are considered to be rigid and it is expected that the floor structure(s) will maintain its integrity during an earthquake of intensity expected in this area.				
Foundation performance	There is no evidence of excessive foundation movement (e.g. settlement) that would affect the integrity or performance of the structure in an earthquake.				
Wall and frame structures- redundancy	The number of lines of walls or frames in each principal direction is greater than or equal to 2.				
Wall proportions	Height-to-thickness ratio of the shear walls at each floor level is: Less than 25 (concrete walls); Less than 30 (reinforced masonry walls); Less than 13 (unreinforced masonry walls);				
Foundation-wall connection	Vertical load-bearing elements (columns, walls) are attached to the foundations; concrete columns and walls are dow eled into the foundation.				
Wall-roof connections	Exterior walls are anchored for out-of-plane seismic effects at each diaphragm level with metal anchors or straps				
Wall openings	The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.				
Quality of building materials	Quality of building materials is considered to be adequate per the requirements of national codes and standards (an estimate).				
Quality of workmanship	Quality of workmanship (based on visual inspection of few typical buildings) is considered to be good (per local construction standards).				
Maintenance	Buildings of this type are generally well maintained and there are no visible signs of deterioration of building elements (concrete, steel, timber)				
Additional Comments					

5.2 Seismic Features

Structural Element	Seismic Deficiency	Earthquake Resilient Features	Earthquake Damage Patterns
Wall	Poor log connections; Inadequate wall-foundation connections.		
Frame (columns, beams)			
Roof and floors	Poor roof connections (ceiling, tie-beams).		
Other	Frames not provided around openings (doors, windows)		

5.3 Overall Seismic Vulnerability Rating

The overall rating of the seismic vulnerability of the housing type is *D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance)*, the lower bound (i.e., the worst possible) is D: MEDIUM-LOW VULNERABILITY (i.e., good seismic performance), and the upper bound (i.e., the best possible) is *E: LOW VULNERABILITY (i.e., very good seismic performance)*.

Vulnerability	high	medium-high	medium	medium-low	low	very low
	very poor	poor	moderate	good	very good	excellent
Vulnerability Class	А	В	C	D	E	F

5.4 History of Past Earthquakes

Date	Epicenter, region	Magnitude	Max. Intensity
1958	Kamchatka, Kronotsky Gulf	8	IX (MSK)

Some buildings of this type were damaged in the 1958 Kamchatka earthquake.

Figure 5A: A Photograph Illustrating Typical Earthquake Damage (1958 Kamchatka earthquake)

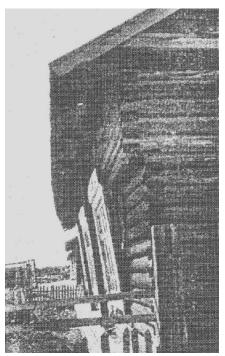


Figure 5B: Wall damage in the 1958 Kamchatka earthquake (showing a side view of the building)

6. Construction

6.1 Building Materials

Structural element	Building material	Characteristic strength	Mix proportions/dimensions	Comments
Walls		800 kg/cm ² (ultimate strength) 800 kg/cm ² (ultimate strength)		Typical log diameter is 150 - 200 mm
Foundation	Concrete	10 MPa (cube compressive strength)		
Frames (beams & columns)				
Roof and floor(s)	Wooden beams (larch)	800 kg/cm ² (ultimate strength)		

6.2 Builder

Anyone can live in buildings of this construction type.

6.3 Construction Process, Problems and Phasing

This construction type is typically built by contractors. Simple carpentry tools are used in the construction. The construction of this type of housing takes place in a single phase. Typically, the building is originally designed for its final constructed size.

6.4 Design and Construction Expertise

Design expertise related to this construction type buildings is available, including the construction quality procedure developed by the author of this contribution. Special design by Professional Engineers and architects (for typical projects and design applications).

6.5 Building Codes and Standards

This construction type is addressed by the codes/standards of the country. Wood construction Building code, Building Catalog of Typical Project for Housing, Vol.1, Part 2, div.1, #14, seria 115, 1957y. The year the first code/standard addressing this type of construction issued was NA. SNiP II-7-81. Building in Seismic Regions.

Design ode. The most recent ode/standard addressing this construction type issued was 1981. Title of the ode or standard: Wood construction Building ode, Building Catalog of Typical Project for Housing, Vol.1, Part 2, div.1, #14, seria 115, 1957y. Year the first ode/standard addressing this type of construction issued: NA National building ode, material odes and seismic odes/standards: SNiP II-7-81. Building in Seismic Regions. Design ode When was the most recent ode/standard addressing this construction type issued? 1981.

The process consists of issuing permits for the design and construction, induding the architectural permits and urban planning/municipal permits. Designers need to have license to practice and are responsible to follow the building codes. Building inspection is performed and the permit is issued.

6.6 Building Permits and Development Control Rules

This type of construction is an engineered, and authorized as per development control rules. Building permits are required to build this housing type.

6.7 Building Maintenance

Typically, the building of this housing type is maintained by Owner(s). The maintenance is performed either by the owner (city) or (periodically) by a contractor - a maintenance firm.

6.8 Construction Economics

140 rub/m² (50 - 100 US\$/m²)-official rate. 50 - 70 person-days per building.

7. Insurance

Earthquake insurance for this construction type is typically available. For seismically strengthened existing buildings or new buildings incorporating seismically resilient features, an insurance premium discount or more complete coverage is unavailable. The insurance is available as a part of the usual property insurance. About 3-5% of the total estimated property value.

8. Strengthening

8.1 Description of Seismic Strengthening Provisions

Seismic Deficiency	Description of Seismic Strengthening provisions used		
Walls	- Installation of vertical clenching members in the walls for two-story buildings; - Connecting wood logs using vertical steel bars		
	- Installation of the frames around the openings		
Wall-Foundation			

Strengthening of Existing Construction :

8.2 Seismic Strengthening Adopted

Has seismic strengthening described in the above table been performed in design and construction practice, and if so, to what extent?

No. In general, it is considered that seismic strengthening for this construction is not feasible.

Was the work done as a mitigation effort on an undamaged building, or as repair following an earthquake? N/A.

8.3 Construction and Performance of Seismic Strengthening

Was the construction inspected in the same manner as the new construction? N/A.

Who performed the construction seismic retrofit measures: a contractor, or owner/user? Was an architect or engineer involved?

N/A.

What was the performance of retrofitted buildings of this type in subsequent earthquakes? N/A.

Reference(s)

- 1. Manual on Certification of Buildings and Structures in the Seismic-Prone Areas, Second Edition CENDR, Petropavlovsk, Kamchatka, Russia 1990
- 2. Building Catalog of Typical Housing Projects, Vol.1, Part 2, Div.1, Seria 115, #14

Author(s)

- Mark Klyachko Director, Centre on EQE and NDR (CENDR)
 9 Pobeda Avenue, Petropavlovsk Kamchatka 683006, RUSSIA Email:cendr@svyaz.kamchatka.su cendr@peterlink.ru FAX: +7(415)22-8774 +7(812)222-0676
 Andrey Benin Senior Researcher, Centre on EQE and NDR (CENDR)
 9 Pobeda Ave., Petropavlovsk Kamchatka 683006, RUSSIA
 - Email:cendr@svyaz.kamchatka.su or cendr@peterlink.ru FAX: (7-415) 22 8774; (7-812) 222 0
- Janna Bogdanova Senior Researcher, Centre on EQE and NDR (CENDR)
 9 Pobeda Avenue, Petropavlovsk Karnchatka 683006, RUSSIA Email:cendr@svyaz.karnchatka.su or cendr@peterlink.ru FAX: +7(415)22-8774 +7(812)222-0676

Reviewer(s)

 Svetlana Uranova Head of the Laboratory , KRSU Bishkek 720000, KYRGYZSTAN Email:uransv@yahoo.com FAX: 996-3312-282859

Save page as

